GEOTHERMAL INVESTIGATION IN SHALLOW OBSERVATION WELLS Project G/A 9 - Contracts 073-76 and 414-77-11 EGN ÷

THE SHALLOW SUBSURFACE TEMPERATURE FIELD IN THE NETHERLANDS

- - - -

Author : W. van Dalfsen Date : February 1981 Nr. : OS 81-05

GROUNDWATER SURVEY TNO P.O. Box 285 2600 AG DELFT THE NETHERLANDS

This investigation was partly made possible with financial assistance of the Energy Research Project Office TNO, in accordance with the National Energy Research Program of The Netherlands

	CONTENTS	Page
	LIST OF FIGURES	v
	LIST OF TABLES	VI
	LIST OF APPENDICES	VII
	SUMMARY	VIII
1.	INTRODUCTION	2
2.	DESCRIPTION OF THE MEASUREMENTS	5
2.1.	Investigated wells	5
2.2.	Equipment	15
2.3.	Measuring method	17
2.4.	Reliability of the temperature data	17
2		
3.		25
3.1.	Representation of the temperature data	25
3.2.	Features of the observed temperature field	36
4.	INTERPRETATION OF THE TEMPERATURE DATA	39
4.1.	Heat transfer in groundwater recharge areas	39
4.2.	Notes about the hydrogeologic constitution of The Netherlands	40
4.3.	Balance of heat transfer in groundwater recharge areas	42
4.4.	Balance of heat transfer in groundwater discharge areas	43
4.5.	Influence of thermal conductivity on the subsurface temperature field	44
4.6.	Other causes of relatively high subsurface temperatures	46
5.	COMPARISON WITH TEMPERATURE DATA FOR GREATER DEPTHS	49
6.	CONCLUSIONS AND RECOMMENDATIONS	51
7.	ACKNOWLEDGEMENTS	53
8.	REFERENCES	54
	· · · · · · · · · · · · · · · · · · ·	

APPENDICES 1 - 39

.

LIST OF FIGURES

.

.

Figure 1.	Location of the investigated wells	4
Figure 2.	Geographical map of The Netherlands	6
Figure 3.	Schematic representation of a groundwater	
	observation well	7
Figure 4.	Measuring the artesian well Vlodrop (nr. 213)	16
Figure 5.	Temperature profiles with probe nr. 4 (left, 770831) and	
	with probe nr. 5 (right, 790312) in observation well	
	De Meern	19
Figure 6.	Disturbance of temperatures in observation well	
	Ellecom (nr. 204), due to upward groundwater	
	flow, at about 95 m, through the borehole	21
Figure 7.	Cooling curve of water in a 25/33 mm PVC pipe	
	surrounded by saturated sand	23
Figure 8.	Isotherm map for a depth of 25 m in The Netherlands	26
Figure 9.	Isotherm map for a depth of 50 m in The Netherlands	27
Figure 10.	Isotherm map for a depth of 75 m in The Netherlands	28
Figure 11.	Isotherm map for a depth of 100 m in The Netherlands	29
Figure 12.	Isotherm map for a depth of 125 m in The Netherlands	30
Figure 13.	Isotherm map for a depth of 150 m in The Netherlands	31
Figure 14.	Isotherm map for a depth of 175 m in The Netherlands	32
Figure 15.	Isotherm map for a depth of 200 m in The Netherlands	33
Figure 16.	Isotherm map for a depth of 225 m in The Netherlands	34
Figure 17.	Isotherm map for a depth of 250 m in The Netherlands	35
Figure 18.	Temperatures (770904) in observation well Californië	
	nr. 41 and (770722) in observation well Homberg nr. 51	38
Figure 19.	Average air temperature at about 2 m above ground	
	surface (after KNMI, 1972)	38
Figure 20.	Schematic groundwater flow pattern in The Netherlands	
	(flow pattern outlined on plate VII-4, Atlas of The	
	Netherlands)	41
Figure 21.	Temperature profile (780412) of observation well	
	Amersfoort nr. 82, indicating upward groundwater flow	45
Figure 22.	Temperature distribution at 500 m below ground surface	
	(after Atlas of Subsurface Temperatures in the European	
	Community, 1980)	48

V,

LIST OF	F TAB	BLES	Page
Table (1.	List of investigated wells	8 - 13
Table 2	2.	Calibration results with probe nr. 2	18
Table 3	3.	Inaccuracies of the temperature equipment inferred from comparison of temperature profiles in observation well	
		De Meern	18

VI

LIST OF APPENDICES

Appendix	1.	Temperature	profile	of	well	De Meern (nr. 1)
Appendix	2.	"	**	"	n	Nieuwkuyk (nr. 31)
Appendix	3.	**	**	11	11	Lage Vuursche (nr. 32)
Appendix	4.	19	n	11	11	Helvoirt (nr. 34)
Appendix	5.	**	0	11	11	Vlijmen (nr. 35)
Appendix	6.	**	17	11	11	Roggel (nr. 47)
Appendix	7.	н	11	11	Ŧ	Tungelroij (nr. 48)
Appendix	8.	11	11	11	11	Schijndel (nr. 59
Appendix	9.	**	11	"	н	Someren 1 (nr. 61)
Appendix	10.		11	11	*1	Veghel (nr. 63)
Appendix	11.	**	11	11	*1	Klundert (nr. 66)
Appendix	12.		**	11	**	Leveroij (nr. 69)
Appendix	13.	17	*1	0	11	Glindhorst 2 (nr. 70)
Appendix	14.	ŦŦ	81	"	"	Seppe (nr. 79)
Appendix	15.	11	н	11	11	Knardijk (nr. 104)
Appendix	16.	**	11	n	**	Vaassen 2 (nr. 105)
Appendix	17.	11	11	11	11	Scharwoude (nr. 115)
Appendix	18.	n	**	11	11	Broek in Waterland (nr. 116)
Appendix	19.	11	"	"	"	Hoenderloo (nr. 119)
Appendix	20.	11	11	"	"	Wageningen (nr. 148)
Appendix	21.	11	ŦŦ	"	Ħ	Eemnes (nr. 158)
Appendix	22.	11	н	"	**	Zuidelijk Flevoland (nr. 178)
Appendix	23.	**	11	Ħ	F3	Noordbergum 4 (nr. 182)
Appendix	24.	87	89	11	**	Den Helder (nr. 184)
Appendix	25.	11	11	11	"	't Veld (nr. 185)
Appendix	26.	"	11	11	"	Sijbekarspel (nr. 187)
Appendix	27.	11	11	"	"	Velsen (nr. 190)
Appendix	28.	17	Ħ	"	н	Medemblik (nr. 193)
Appendix	29.	17	81	11	"	Schoorl (nr. 194)
Appendix	30.	11	11	11	8	Egmond-Binnen (nr. 195)
Appendix	31.	17	11	11	"	Heeze (nr. 197)
Appendix	32.	11	11	#1	n	Asperen (nr. 202)
Appendix	33.	"	"	11	51	Twekkelo 1 (nr. 207)
Appendix	34.	**	**	"	"	Twekkelo 2 (nr. 208)
Appendix	35.	*1	81	11	"	Twekkelo 3 (nr. 209)
Appendix	36.'	**	**	17		Vlodrop (nr. 213)
Appendix	37.	11	**	11	11	Noordbergum 5 (nr. 229)
Appendix	38.	п	11	"	Ħ	Luijksgestel (nr. 241)
Appendix	39.	11	"	11	11	Rouveen (nr. 243)

VII

,

.

SUMMARY

In the period December 1976-September 1979 temperatures were measured in 251 wells in The Netherlands. Nearly all wells are deep groundwater observation wells, which allow a reliable determination of natural subsurface temperatures.

Temperatures were measured with an electrical thermometer, in which a platinum resistance transduces temperature into electrical voltage transmitted to the ground surface. Maximum deviation of most temperature readings from true temperatures is 0,1 °C; inaccuracy in the difference of two temperature data of one well is in the order of 0,01 °C.

Based on the temperature data the shallow subsurface temperature field in The Netherlands was delineated on maps every 25 m down to a depth of 250 m below ground surface. Temperature data of greater depths have been added in appendices.

The shallow subsurface temperature field in The Netherlands, delineated to a depth of 250 m below ground surface, shows features which reflect several phenomena. These are (i) convection of heat by infiltrating meteoric water and by groundwater flowing in the hydrologic cycle, (ii) laterally varying thermal conductivities of sediments and (iii) laterally varying heat flow or heat transport at great depths. A comparison of the isotherm map for a depth of 250 m with the isotherm map for a depth of 500 m, derived from data of oil and gas wells, shows some similarity in the locations of the high-temperature areas at both depths. The temperatures indicated on the map for a depth of 500 m are probably too high for a number of locations.

VIII

1. INTRODUCTION

Knowledge of the Earth's subsurface temperature field is important in several aspects. In the last decade the determination of subsurface temperatures has been fostered especially by a growing interest in the exploitation of geothermal energy.

In The Netherlands the 'Gespreksgroep Aardwarmte' (Geothermal Energy Discussion Group), established in 1974, proposed a programme to evaluate the geothermal potential of the country, including systematic compilation and collection of geothermal data. This led to the compilation of early subsurface temperature measurements in The Netherlands (Visser, 1978) and to a processing of temperature data of exploration and exploitation boreholes for oil and gas. The latter work was performed by Prins on the temperature data at the Geological Survey of The Netherlands. His results have been incorporated in the Atlas of Subsurface Temperature in the European Community. This atlas was compiled by Haenel; its publication (1980) was arranged by The Commission of the European Communities.

The geothermal investigation in shallow (< 400 m) observation wells, reported here, has been another point of the above mentioned programme of the 'Gespreksgroep Aardwarmte' and was included in the EC-programme on geothermal energy. The objectives of this investigation were (i) determination of the temperature field to a depth of 250 m (if possible to 400 m), (ii) correlation of the observed temperatures with temperature data of greater depths and (iii) in situ determination of thermal conductivities of unconsolidated sediments around observation wells. Shallow subsurface temperatures in The Netherlands may be measured in groundwater observation wells, completed to record piezometric heads and to take water samples in penetrated aquifers. These observation wells are also suited to a reliable determination of the shallow subsurface temperature field, since their influence on the natural temperature field, which would exist if there were no well, is normally very small.

The determination of thermal conductivity in a groundwater observation well is not a straightforward procedure. It is possible only by measurement of a cooling curve. The theory and some examples of model cooling curves, pertaining to observation wells, has been presented already (Van Dalfsen, 1979a). is due to continual breakdowns of the equipment, which urged to postpone the measurement of cooling curves in order to complete at least the determination of the subsurface temperature field.

Fig. 1 Location of the investigated wells

2. DESCRIPTION OF THE MEASUREMENTS

2.1. Investigated wells

In the period December 1976 - September 1979 temperatures were measured in 251 wells (Table 1). The locations are, with serial number, shown in Figure 1. By far most wells are groundwater observation wells, some are groundwater pumping wells and three (nrs. 207, 208 and 209) in Twente (Fig. 2) are rock salt exploitation wells.

In the observation wells, and also in most pumping wells, temperatures were measured in a piezometer. The piezometers are PVC pipes with a slotted section (screen) of a few metres at the bottom end (Fig. 3), which were lowered into the borehole after drilling. In one well (Schoorl, nr. 194), however, the piezometers are of steel pipe. The piezometers have inner diameters in the range 18 - 50 mm; the inner and outer diameters of the major part amount to 25 or 33 mm. Diameter of the boreholes in which the piezometers were placed, ranged between 12 and 60 cm. Usually the wells have been completed with gravel packs around the screens and clay plugs at the depths of confining strata. The clay plugs serve to prevent groundwater flow from one aquifer into another through the borehole. The remaining space of the boreholde (annulus) has been filled with sand (backfill). Several piezometers tap artesian aquifers and have been provided with a valve. The highest piezometric heads above ground surface, 6 and 12 m, were met in the wells with nrs. 212 and 213 respectively, both in the province of Limburg. Relatively low piezometric heads, 30 - 51 m below ground surface, were met in 5 wells, nrs. 103, 119, 120, 123 and 125, in The Veluwe.

The piezometric head, or the length of the water column in a piezometer may fluctuate in the order of a few centimetres per day. Only if a pumping well is close to a piezometer, abrupt changes of a few metres can occur immediately after the pumping well has been put in or out of operation. In each well temperatures were measured at least 3 weeks after its completion. In four groundwater pumping wells (nrs. 52, 53, 92 and 244) temperatures were measured, whilst these wells were pumped. Before the temperature measurements in the rock salt exploitation wells they had been out of active operation for at least 33 months.

- 5 -

Fig. 2 Geographical map of The Netherlands

SCHEMATIC REPRESENTATION OF A GROUNDWATER OBSERVATION WELL

series	locality	mapsheet-nr.	GMS-coord	linates	maximum	date	probe
nr.		borehole	1	4	depth of		111.
		(RGD/RID)	^	φ	(m)		
		210 147	E ⁰ 01114	52°05109"	289	011276	1
la	De Meern	31G-14/	5 01.14"	52 05 09	209	011270	
				11	290	240677	3
10					290	310877	1
la				11	290	120379	5
le			n	11	209	050679	5
TI		21TT 550	E002120"	52006109"	194	011276	1
2	Vieuten	31H-330 207 210	5 ⁰ 15122"	52 00 09	148	021276	1
3	Langbroek	39A-210	5026151"	5200141	115	021276	1
4	Houten	393-208	$5^{0}11^{1}21^{11}$	52 01 21"	182	021276	1
5	Lopik	38F-98	4055132"	51058 01"	210	091276	1
7	Schalkwijk 1	392-209	5 ⁰ 13'46"	51058'54"	238	091276	1
89	Tull on 't Waal	38F-424	507132"	5200110"	190	171276	1
8h		N	"	"	183	230277	2
9	Loepen a/d Vecht	31E-163	500158"	52 ⁰ 11'49"	119	201276	1
10	Bethune Polder	31F-272	503'39"	5209'29"	197	110177	1
11	Driebergen 1	320-233	5°18'32"	52 [°] 03'36"	150	110177	1
12	Cothen	39A-187	5°18'20"	51 [°] 59'18"	142	130188	1
13	Oudewater	38 B-1 42	4 [°] 52'35"	52 ⁰ 00'59"	197	140177	1
14	Lexmond	38F-421	502'10"	51 ⁰ 37'30"	214	200177	1
15	Blokland	31G-162	4 ⁰ 58'45"	52 ⁰ 02'26"	194	200177	1
16	Waardenburg	39C-104	5 ⁰ 12'35"	51 ⁰ 51'08"	152	210177	1
17	Zoelen 1	39D-152	5 ⁰ 23'20"	51 ⁰ 55'35"	157	210177	1
18	Woudenberg	32D-135	5 ⁰ 27'26"	52 ⁰ 04'51"	182	260177	1
19	Bleskensgraaf	38D-262	4 ⁰ 47'27"	51 ⁰ 52'14"	113 ·	280177	1
20	Druten	39н-165	5 ⁰ 36'32"	51 ⁰ 52'24"	235	300177	1
21	Glindhorst 1	32G-138	5 ⁰ 30'59"	52 ⁰ 06'44"	249	020277	1
22	Veenendaal	39E-145	5 [°] 32'46"	52 ⁰ 01'32"	240	020277	1
23	Driebergen 2	32C-230	5 ⁰ 18'24"	5203'41"	182	040277	1
24a	Loosdrecht	31F-235	5 ⁰ 08'52"	52 ⁰ 12'10"	104	260177	1
24Ъ	**	**	"		224		
25a	Genderen 1	44F-94	5'05'58"	51 44 39"	192	090277	1
25b	**	u			192	300378	4
26	Waalwijk	44H-34	504'52"	51 39'34"	125	100277	1
27	Lopikerkapel	38 E-1 00	4 59'35"	51 59 '06"	147	230277	2
28	H.IAmbacht	38C-393	4ॅू38'35"	51 51 40"	154	250277	2
29	Lienden 1	39E-84	5 31 40"	51 58'03"	120	280277	2
30	Lienden 2	39 E-9 3	5 30'15"	51 55 54"	84	280277	2
3.1	Nieuwkuijk	45C-188	5 11'15"	51 40 08"	276	020377	2
32	Lage Vuursche	32A-335	5 13'10"	52 11 03"	311	040377	2
33	De Bilt	32C-336	5 12 45"	52 06 33"	154	050377	2
34	Helvoirt	45C-191	5-11'20"	51 39 03	300	160377	2
35	Vlijmen	45C-193	5-11-19"	51 41 34"	312	300377	2
36	Valkenswaard 1	57B-47	5 26'06"	51 19 30"	233	070477	
37	Valkenswaard 2	57B-46	5 27 33"	51 20 21"	202	080477	2
38	Eindhoven	51G-	5 28 57"	51 25.05"	220	120477	2
39	Prinsenbosch	50B-70	4 51'55"	51 32'39"	110	1204//	2
40	Oosterhout	44D-177	4 49'22"	51 38.46"		1304//	3
41a	Californiē	52G-198	6 06'43"	52 25.1/"	1 10	0/0/77	
41b	" 	" "	_0_,,,,,		160		3
42	Vredepeel	52A-115	5 51'14"	51 32.28"	201	080777	2
43	Grubbenvorst	52G-165	6 U9'56"	DI 28.78.	105	120777	2
44	Maasdriel	45B-106	5 19'24"	151 4/ 20"	192	1 120///	1

Table 1 List of investigated wells

ies	locality	mapsheet-nr.	GMS-coor	linates	maximum	date	probe
		Dorenole (RGD/RID)	λ	φ	measurement		···· •
	Hunsel	58C-120	5 ⁰ 45'44"	51 ⁰ 12'25"	145	.130777	3
	Stramproij	57H-47	5 ⁰ 40'16"	51 ⁰ 11'50"	86	130777	3
	Boggel	58B-123	5°54'30"	51 ⁰ 17'45"	340	140777	3
	Tungelroij	57H-69	5 44 09"	51°13'25"	296	150777	3
	Sittard	60C-781	5°51'10"	50 [°] 59'54"	172	190777	3
	Weert	57F-43	5 43'02"	51 [°] 15'21"	205	200777	3
	Homberg	52G-199	6 ⁰ 08'39"	51°28'02"	99	220777	3
	Ospel	58A-	5°50'10"	51 ⁰ 18'36"	89	260777	3
	Susteren	60A-223	5 [°] 51'10"	51 ⁰ 03'19"	153	270777	3
	's-Gravendeel 1	44A-310	4 [°] 37'18"	51 [°] 46'48"	243	020877	3
	Pannenhoef 1	50A-149	4 ⁰ 39'18"	51 [°] 31'14"	243	030877	3
	Pannenhoef 2	50A-162	4 ⁰ 39'16"	51°31'40"	231	030877	3
	Macharen	45E-105	5 [°] 31'47"	51°48'00"	90	230877	4
	Haaren	45C-192	5°14'25"	51°36'60"	189	230877	4
	Schijndel	45D-	5°24'06"	51°35'60"	307	240877	4
	T.ith	45B-109	5 [°] 24'17"	41°46'58"	174	240877	4
	Someren 1	57F-57	5 ⁰ 40'34"	51 ⁰ 20'22"	306	250877	4
	Budel	57E-64	5 ⁰ 38'18"	51 ⁰ 17'35"	243	250877	4
	Veghel	45G-59	5 ⁰ 35'22"	51 ⁰ 37'38"	307	260877	4
	Lieshout	51E-55	5 ⁰ 33'48"	51°31'01"	194	260877	4
	Ballonzuil	52B-184	5 ⁰ 56'03"	51°32'42"	187	050977	4
a	Klundert	43H-63	4 ⁰ 33'08"	51 ⁰ 39'18"	309	070977	4
b	11	**	11		309	120679	6
	Belfeld	58E-199	6 ⁰ 06'18"	51 ⁰ 18'51"	171	080977	4
	Helden	58 B-1 54	5057'43"	51 18'45"	173	080977	4
	Leveroij	58 A- 87	5 49'24"	51 16'13"	399	100977	4
	Glindhorst 2	32G-137	5 30'05"	52 06 49"	289	280278	4
	Bussum	26C-127	5 10'31"	52 16'18"	242	030378	4
	Hilversum	32 A- 390	5 12'14"	52 14'14"	225	100378	4
	Genderen 2	44F-127	506'09"	51 44'36"	30	310378	4
	Genderen 3	44F-128	506'09"	51 44'36"	186	310378	4
	Genderen 4	44F-79	5 05 53 "	51 44'39"	166	300378	4
	's Gravendeel 2	44A-334	4 37'55"	51 44'22"	170	040478	4
	's Gravendeel 3	44A-	4 36'49"	51 44'53"	213	040478	4
	's Gravendeel 4	44A-	4 37'06"	51 45'32"	224	050478	4
	Seppe	49F-240	4 33'29"	51 33'54"	251	050478	4
	Holk	32в-209	5 23 47 "	52 13'55"	206	100478	4
	Zwartebroek	32 E- 65	5 30'45"	52 10'30"	190	100478	4
	Amersfoort	32B-210	5 25'03"	52 09'43"	186	120478	4
	Reijerscop	31G-170	4 58 48"	52 04 39	181	170478	4
	Linschoten	31G-118	4 57'26"	52 04 09"	110	170478	4
	Espelose Broek 1	28C-119	6~20'45"	52 17 56"	52	180478	4
	" " 2	28C-123	6 20 42"	52 17'56"	54	180478	4
	" " 3	28C-118	6 20 42"	52 17 56"	130	180478	4
	" 4	28C-124	6 20'42"	52 17 53"	4/	1004/8	14
	" " 5	28C-122	6 20 37"	52 17.53"	10 1	100470	1
	" " 6	28C-	6 20'43''	52 18'18"	30	180478	4
		280-	6 21.03"	52 17 40	195	210478	4
	Zwolle 1	216-276	6 ⁰ 501/0"	52017117"	122	210478	4
	De LUTTE	290-100	1 0 09 40	122 11 41	1 144	. 2201/0	1 ·

.

ble 1 List of investigated wells (continued)

series	locality	mapsheet-nr.	GMS-coord	linates	maximum	date	pro
nr.		borehole (RGD/RID)	λ	φ	depth of measurement		nr.
94	Olst	27G-94	6 ⁰ 06'44"	52 [°] 20'13"	195	230578	4
95	Dalfsen 1	27F-42	6 ⁰ 16'54"	52 ⁰ 27'20"	209	230578	4
96	Nieuwleusen	21н-44	6 ⁰ 17 ' 27"	52 [°] 32'06"	209	230578	4
97	Terwolde	27G-99	6 ⁰ 05'23"	52 [°] 18'24"	208	300578	4
98	Deventer	33E-181	6 [°] 10'41"	52°14'35"	212	300578	4
99	Diepenveen	27G-	6 ⁰ 08'47"	52 ⁰ 18'22"	111	300578	4
100	Boerhaar 1	27G-	609158"	52°21'52"	193	300578	4
101a	Twello 1	33E-185	6 ⁰ 05'09"	52 ⁰ 15'20"	188	010678	4
101b	11	11	"		243	220678	4
101c		n	11	11	244	090879	6
102	Vaassen 1	27 D -54	5 ⁰ 59130"	52 ⁰ 18102"	169	010678	4
103	Wapenveld 1	27E-138	6°03'09"	52 [°] 26'47"	197	010678	4
104	Knardijk	26E-3	5032157"	52022138"	300	050678	4
105	Vaassen 2	27D-53	6°00'19"	52 ⁰ 17'07"	261	060678	4
106	Wiesel	33B-235	5055155"	52 ⁰ 15125"	199	060678	
107	Witharen	220-68	6 ⁰ 22143"	52 33 15"	75	080678	4
108	Voorsterbos	21B-170	5054153"	52°40'19"	142	080678	4
109a	Kallenkote	166-88	6 ⁰ 10144"	52 ⁰ 48144"	150	080678	4
109b	II II	100-00	"	J2 40 44	150	250479	5
110	Accen 1	12D-120	60351481	53000112"	197	130678	1
111	Assen 2	12D - 120 12D - 160	6 ⁰ 35152#	5300145"	229	130678	4
112	Veeningen	22D = 100	6022127"	52 ⁰ 391 <i>AA</i> "	166	200678	1
113	Kikkerboek	22A-74 22B-33	6 ⁰ 36130"	52 ⁰ /0/13"	55	200678	1
114	Boerbaar 2	225-33 27F-	6 ⁰ 10'44"	52 22 58"	8	200678	
115a	Scharwoude	198-85	500146"	52 22 30	239	210678	
115h	"	"	"	11	280	090479	5
116	Broek in Waterland	25F- 55	5004 17"	52°26'20"	250	210678	4
117	Oostvaardersdiep	25F-103	507'25"	52 ⁰ 22'53"	150	210678	4
118	't Harde 1	27B-156	5056'49"	52 ⁰ 22133"	207	050778	4
119	Hoenderloo	33D-125	5°54'02"	52°07'10"	257	050778	4
120a	Deelen	330-133	5054108"	52002145"	158	100778	4
120b	11	"	"	"	165	160878	4
121	Schokland	21A-38	5 [°] 46'51"	52 ⁰ 39'29"	106	150878	4
122	Loenen 1	33D-130	6 ⁰ 00'53"	52 ⁰ 06'17"	176	160878	4
123	Loenen 2	33D-135	5°57'59"	52°05'28"	197	160878	4
124	Hoog-Soeren	33A-103	5°48'08"	52°14'22"	192	170878	4
125	't Harde 2	27B-155	5 [°] 54'50"	52 [°] 22'54"	61	170878	4
126	Wapenveld 2	27E-139	6 ⁰ 03'09"	52 [°] 26'28"	135	180878	4
127	Wezep	27в-193	6 ⁰ 00'48"	52°27'23"	188	180878	4
128	Assen 3	12D-121	6 [°] 35'48"	5300'21"	229	210878	4
129	Zeijerveld 1	12D-126	6 [°] 30'36"	53°02'05"	189	210878	4
130	Zeijerveld 2	12D-159	6°31'20"	53°02'04"	199	210878	4
131	Valtherbos	17F-45	6 [°] 52'49"	52°49'13"	126	220878	4
132	Sleen	17H-282	6°50'14"	52°49'04"	125	220878	4
133	Emmen	17н-75	6°51'60"	52°46'43"	114	220878	4
134	Zuidwolde	22A-93	6°27'54"	52°40'33"	172	220878	4
135	Ruinerwold	16н-55	6°17'40"	52°43'46"	142	230878	4
136	Hoogzand	6G-42	6°05'35"	53°10'44"	105	230878	4
137	Noordbergum 1	6D-205	6°01'00"	53°12'41"	240	230878	4
1	1		1	1		1	-

Table 1 List of investigated wells (continued) .

ries	locality	mapsheet-nr.	GMS-coor	linates	maximum	date	probe
		(RGD/RID)	λ	ф	depth of measurement		nr.
	Hoornaar	38G-304	4 ⁰ 56'55"	51 ⁰ 52'31"	147	200779	6
2	Beek	40G-86	6 [°] 10'14"	51 ⁰ 54'58"	176	250779	6
	Didam	40E-190	6 ⁰ 09 ' 42"	51 ⁰ 57'31"	168	250779	6
	Noordbergum 7	6D-209	5 ⁰ 59 ' 59"	53 ⁰ 13 ' 20"	178	260779	6
	Noordbergum 8	6D-207	6 ⁰ 00'27"	53 ⁰ 13'11"	148	260779	6
	Noordbergum 9	6D-214	6 ⁰ 01'17"	53 ⁰ 12 ' 55"	239	260779	6
	Noordbergum 10	6D-208	5 ⁰ 59 ' 38"	53 ⁰ 13'06"	153	270779	6
	StMaartensdijk	49a-	4 ⁰ 05 ' 22"	51 ⁰ 32 ' 44"	121	020879	6
	Brielle	37D-134	4 ⁰ 10'07"	51 ⁰ 54 ' 57"	95	020879	6
	Someren 2	57F-82	5 ⁰ 40'56"	51 ⁰ 20'05"	235	030879	6
	Luijksgestel	57A-35	5 ⁰ 17 ' 36"	51 ⁰ 17 ' 05"	341	040879	6
	Zwolle 2	21G-292	6 ⁰ 03'06"	52 ⁰ 30'51"	124	070879	6
	Rouveen	21E-138	6 ⁰ 11'22"	52 ⁰ 36'49"	292	070879	6
a	Twello 2	33E-188	6 ⁰ 05'10"	52 ⁰ 15'22"	184	090879	6
b	**	n	11	- 11	184	090879	6
c	n	11	11		184	090879	6
	Ameide	38E-121	4 ⁰ 56'12"	51 ⁰ 56'11"	198	170879	6
	Middelkoop	38H-177	5 ⁰ 03'22"	51 ⁰ 55'21"	183	170879	6
	Vianen	38F-504	5 ⁰ 06'36"	51 ⁰ 58'04"	207	230879	6
	Hei- en Boeicop	38F-503	5 ⁰ 05'52"	51 ⁰ 56'29"	198	230879	6
	Schalkwijk 2	39A-234	5 ⁰ 12'08"	52 ⁰ 00'07"	164	290879	6
	Noordbergum 11	6D-215	5 ⁰ 58'39"	53 ⁰ 13 ' 11"	125	300879	6
	Noordbergum 12	6D-210	5 ⁰ 59'15"	53 ⁰ 13'40"	112	310879	6

le 1 List of investigated wells (continued)

ies	locality	mapsheet-nr.	GMS-coord	linates	maximum	date	probe
		(RGD/RID)	λ	φ	measurement		112 •
:	Goëngahuizen	11A-64	5 54'23"	53 04 59"	117	240878	4
)	Eernewoude	11B-23	5 56'50"	53 07 40"	118	240878	.4
a	Nyega 1	11B-67	6'02'34"	5307'34"	16	240878	4
b	11		н	11	175	251078	4
	Goingarijp	11C-60	5 [°] 46'46"	53 ⁰ 00'29"	217	260878	4
:	Haskerhorne	11C-90	5 [°] 49'36"	52 ⁰ 57'00"	225	260878	4
	Joure 1	11C-61	5 [°] 49'47"	53 ⁰ 00'19"	121	300878	4
	Spannenburg	15F-115	5°41'37"	52 ⁰ 55'01"	165	300878	4
	Joure 2	11C-62	5°45'43"	52 ⁰ 58 ' 27"	113	300878	4
5	Boornbergum	11E-67	6 ⁰ 03'34"	530517"	200	300878	4
,	Nvega 2	11B-25	6 ⁰ 01'43"	53 ⁰ 07'27"	245	300878	4
3	Wageningen	39F-305	5°39'22"	51°58'52"	294	060978	4
)	Beuningen	39н-119	5°44'24"	51°50'20"	197	060978	4
,	Beesd	39C-142	5 [°] 12'50"	51°54'43"	201	070978	4
	Zoelen 2	39D-150	5°22'44"	51°54'55"	29	070978	4
	Est	39D-195	5°19'52"	51°51'42"	200	070978	4
	Giessen	44E-119	5°01'18"	51°47'26"	228	080978	4
	Dussen	44E-118	4 [°] 56'09"	51°44'55"	213	. 080978	4
	Bemmel	400-393	5°53'28"	51°54'21"	187	090978	4
	Andelst	400-421	5°45'16"	51°54'37"	144	110978	4
, I	Fikkersdries	402-400	5°47'55"	51°56'45"	191	110978	4
	Femnes	26D-5	5°19'13"	52 [°] 16'16"	296	120878	4
	Engelbert	7D-281	6°39'22"	53°12'22"	204	240978	4
.	Marin 1	11F-38	6 ⁰ 18'19"	53°07'36"	217	250978	4
	Marin 2	117-	6018118"	5307'34"	69	250978	4
	Grootegast	6H-53	6 ⁰ 17'19"	53°11'50"	126	250978	4
	Nietan	122-	6°24'53"	5309130"	243	260978	4
' [Oppen	12F - 166	6°40'43"	53008.41"	201	260978	4
	Zomerdijk	83-54	6 ⁰ 58'12"	53016'22"	97	270978	4
	1+ Waar	7H-80	6 ⁰ 57'20"	53013132"	170	270978	4
	C waar Schildwolde	76-93	6°47'44"	53015149"	147	270978	4
	Execution	76-97	6 ⁰ 47155"	53011107"	151	270978	4
	Froombosch	121-92	6 ⁰ 53124"	53008108"	151	280978	4
	Multendam	12P-61	707136"	5303157"	174	290978	4
		130-01	707144"	52057151	221	290978	4
	Serringen	130-42	701117	5300121"	131	290978	4
	Stauskallaat	26m-55	5 ⁰ /3138"	52025112	116	091078	4
	Bremerberg 1	20F-55	5 ⁰ 43 50	52 25 12	206	091078	4
	Bremerberg 2	266 120	5 ⁰ 221/0"	52 ⁰ 21 157"	154	091078	4
	Hardenbroek	206-139	50251431	52007111"	163	111078	4
		22G-127	500100"	52008105"	168	111078	4
	Achterveid	52G-150	5 29 22	52 00 05	100	1110/0	-
	Zuidelijk Flevo-	260 42	=02610A	520101211	346	131078	4
	Iand Dellis meelde	20D-42	7009117	5307131"	141	241078	4
	Berringworde	130-47 6D 49	60011271	53013130"	101	251078	4
	Noorabergum 2	6D-49	601117	5301/130"	180	251078	4
	Noorabergum 3	6D-102	601124	53012120"	260	251078	4
a	woorwergum 4	00-200 "	1 0 01 24 ···		263	270779	6
a	01 2 - 1 - 2 + 2 -	160 105	6°03106"	5205A100"	150	251078	4
a	Uldenoltpade	108-102	1 0 03.00"	52 54 00	130	251078	4
a		00.100	1011100	50°571041	202	140379	5
- 1	Den Helder	90-190	4 44 00"	52 51 04	295		

٠

ole 1 List of investigated wells (continued)

series	locality	mapsheet-nr.	GMS-coord	linates	maximum	date	pro
nr.		borehole	2	<u>ل</u>	depth of		nr.
		(RGD/RLD)	^	Ψ	measurement		
185	't Veld	140-62	4 [°] 51'53"	52°44'58"	324	220379	5
186	Groet	140 - 28	4°40'41"	52°43'04"	193	230379	5
187	Sybekarspel	19E-101	4059102"	52°42'41"	375	230379	5
188	Ouderkerk a/d	190 101	4 55 62	<i>J L L</i>			-
100	Amstel	256-376	4053142"	52 ⁰ 17'42"	148	270379	5
189	Hoofddorp	25C - 340	4°41'55"	52°18'01"	97	270379	5
190	Velsen	25A-926	4035153"	52 [°] 28'45"	274	300379	5
191	Heemskerk	190-556	4°38'30"	52°30'23"	148	300379	5
192	Beverwiik	19C-557	4°38'34"	52 [°] 29'46"	149	300379	5
193	Medemblik	14H-43	506'13"	52°46'42"	265	090479	5
194	Schoorl	19A-21	4°40'45"	52 ⁰ 41'36"	308	110479	5
195	Egmond-Binnen	19A-259	4°39'04"	52 [°] 36'11"	343	110479	5
196	Zunderdorp	25E-344	4°58'05"	52 [°] 24'29"	115	110479	5
197	Heeze	57E-76	5°35'54"	51 [°] 21'40"	386	190479	5
198	Asten	52C-190	5°48'24"	51 [°] 23'45"	139	190479	5
199	Hasselt	21G-390	6 ⁰ 05'48"	52 [°] 34'39"	169	250479	5
200	Meppel	21E-137	6 ⁰ 10'42"	52 [°] 41'33"	167	250479	5
201	Dalfsen 2	21H-45	6 ⁰ 14'40"	52 [°] 30'19"	210	240479	5
202a	Asperen	38H-178	5 ⁰ 05'39"	51 [°] 52'38"	265	010579	5
202ъ		11	11	11		050579	5
202c	**	11	11	п	264	240779	6
203	Gendringen	41C-35	6 ⁰ 20 ' 50"	51 ⁰ 52'28"	70	070579	5
204	Ellecom	33G-164	6 ⁰ 05'27"	52 ⁰ 02'18"	160	080579	5
205	Eerbeek	33D-139			187	080579	5
206	Bronkhorst	33G-154	6 ⁰ 10'45"	52 ⁰ 04 ' 43"	162	080579	5
207	Twekkelo 1	34F-	6 ⁰ 46'48"	52 ⁰ 14'00"	479	100579	5
208	Twekkelo 2	34F-	6 ⁰ 49'46"	52 ⁰ 13'35"	402	100579	5
209	Twekkelo 3	34F-	6 ⁰ 48'02"	52 ⁰ 13'59"	410	110579	5
210	Enschede	34F-	6 ⁰ 53'32"	52 ⁰ 13'10"	71	110579	5
211	Haamstede	42B-40	3 42 26	51°43'01"	143	160579	5
212	Linne	58D-313	5 56'07"	51008 ' 36"	37	250579	5
213 .	Vlodrop	60E-17	604'27"	51 07 47 "	400	250579	5
214	Kudelstaart	31B-111	4 43 46"	52°13'34"	149	060679	6
215	Voorhout	30F-422	428'17"	52 13 40"	210	060679	6
216	Echt	60в-95	5 57'05"	51 05'13"	201	070679	6
217	Mheer	62C-59	5 48'32"	50 47 '01"	99	070679	6
218	Haamstede 2	42B-53	3 42'25"	51 42'44"	139	110679	6
219	Haamstede 3	42B-51	3 41'33"	51 42'46"	150	110679	6
220	Osse 1	42F-25	3 53'09"	51 44'37"	110	110679	6
221	Osse 2	42F-24	3 53'14"	51 44'37"	82	110679	6
222	Den Bommel	43B-49	4 17'26"	51 57'38"	76	120679	6
223	Schelphoek	42G-22	3 49'32"	51 41'14"	110	120679	6
224	Dreischor	42F-23	4 00'37"	51 41'51"	84	130679	6
225	Haamstede 4	42E-	3 44 39"	51 41 45"	157	130679	6
226	StPhilipsland	43D-17	4 12'34"	51 36 45"	23	140679	6
227	Bergen op Zoom	49 E- 65	4~20'32"	51 28 54"	86	140679	6
228	Colijnsplaat	42G-40	3-50'09"	51 35 44"	120	140679	6
229a	Noordbergum 5	6D-213	6-02'00"	53-12'55"	179	160779	6
229b					250	270779	6
229c	"	"	"O"		125	300879	6
230	Noordbergum 6	6D-211	5 58'53"	53 14'02"	127	160779	6

.

2.2. Equipment

Temperatures are measured with a platinum resistance (100 Ω) thermometer. A temperature transducer (platinum resistance) has been mounted - thermally isolated - at the lower end of a probe, made of brass and approximately 45 cm long. To this platinum resistance a small (\approx 2,5 mA) direct current is applied. A cable (> 500 m) on a hand-driven reel transmits separately the current and the signal (the potential drop across the platinum resistance) between transducer and the ground surface. After amplification the signal is shown digitally up to one hundredth's of a degree centrigrade on the display of a measuring box. In the same box the direct current is generated with power supply of a portable 220 V AC-generator. A depth-meter has been mounted on top of a tripod, which conducts the cable into the well. All parts of the equipment are portable so as to be able to measure also at locations which are not accessible by car. During the investigation six probes were used in succession. Three of them were lost in wells together with several hundred metres of cable, probe nr. 1 in well nr. 26, probe nr. 2 in well nr. 40 and probe nr. 5 in well nr. 211. The third probe, with a larger diameter (13 mm) than the other ones (10 mm), was an emergency-probe, which was used until a new series of probes had been manufactured. Probe nr. 4 was replaced after temperature measurements in several wells had shown a mis-functioning (see section 2.4.) of the equipment. This was caused by leakage water, that had penetrated into the cable at its connection with the probe. With the subsequent probes such leakage could be avoided. After loss of the second probe the 4 mm thick polyurethane cable, used till then, was replaced by a stronger cable. The tensile strength of this 6 mm thick PVC cable, internally strengthened with a steel core, is 900 N. With the replacement of the polyurethane cable by the thicker PVC cable, the cable reel had to be replaced by a larger one. Later on persistent failures arose with this cable reel, especially of the electrical sliding contacts, which showed to be increasingly vulnerable.

FIGURE 4 : MEASURING THE ARTESIAN WELL VLODROP (Nr. 213)

2.3. Measuring method

In the observation wells temperatures were measured in the water column in one of the piezometers, normally the deepest one. The measurements were taken at depths increasing with intervals of 1 or 2 m. The depths were tabulated with respect to the top of the piezometer pipe. Temperature was recorded after a short halt (10 - 20 s) of the probe, after which the temperature transducer should be in thermal equilibrium with the surrounding water column. In most wells such measurements could be carried on to the bottom of the piezometer pipe, thus resulting in temperature data along the whole column.

In quite a number of wells, however, the probe stuck on its way down and had to be withdrawn. In such cases the probe was lowered into another piezometer of the well, if this could extend the range of depths. The probe stuck mostly in relatively old wells. As these wells predominate in the province of Zeeland, here only small maximum depths of temperature measurements (Table 1) could be reached.

Some piezometers, which tap an artesian aquifer, had to be extented by an additional length of pipe. In this way the water could be confined in the pipe, as is necessary to measure equilibrium temperatures. The two strongly artesian wells, nrs. 212 and 213, were measured with the aid of a truck with hoist (Fig. 4). At this occasion it was disappointing that in all piezometers of well nr. 212, of which the deepest one is 396 m, the probe stuck at a depth of only 37 m.

.4. Reliability of the temperature data

The reliability of the measured temperatures involves three aspects: (i) the inherent accuracy, concerning temperature and depth, of the equipment (ii) the influence of the borehole with its piezometers, clay plugs, gravel packs and back-fill on the natural temperature field (which would exist if there were no well) and (iii) the influence of the water-displacement by probe and cable upon the temperatures in a piezometer.

Inherent accuracy of the equipment

Each time another probe had been mounted, the equipment was calibrated at two temperatures, in melting ice and in water at 29,9 \pm 0,1 ^OC. The latter value was read from a mercury thermometer. In this way a sufficient

absolute accuracy of temperature indication could be obtained, as appeared after the equipment - measuring box, cable and the second probe - had been calibrated at the Netherlands Institute for Weights and Measures (Table 2).

temperature indication (^O C) on measuring box	correction (^O C) which should be applied to obtain true temperature
0,00	- 0,02
5,00	- 0,02
10,00	- 0,02
15,00	- 0,02
20,00	- 0,01
25,00	+ 0,01

Table 2 Calibration results with probe nr. 2

The above results hold for ambient temperatures from 5 to 20 $^{\circ}$ C. Besides the calibration with a mercury thermometer, each time another probe had been mounted also a temperature profile was recorderd in observation well De Meern (nr. 1). Consequently the accuracies of the equipment with probes 1, 3, 4, 5 and 6 could be inferred from a comparison of their temperature profiles in observation well De Meern with the temperature profile obtained with probe 2 in the same well (Table 3).

probe of temperature equipment	correction (^O C) which should be applied to obtain true temperature
1	- 0,05
2	- 0,02
3	- 0,01
4	+ 0,03
5	- 0,06
6	- 0,04

Table 3 Inaccuracies of the temperature equipment inferred from comparison of temperature profiles in observation well De Meern

																								<u>^</u>	
		8		10						1	2		13			1	4			.		1			
							λi΄																		
-25							1																		
							<i>\</i>																		1
-58							N		1				-												
70								NA.																	111
1/3		-				-			2.																
4.00										A															
100											Ì		-												
105											1	X													
123												1)m													
150													A												
-1.00													Ň	AN AN				-				1			
175															200										
								-																	
200																	~~~```	ij.							
200																			11			-			
225								1						1											
EC.J														;						Ň	X				
250																						N.			
<u> </u>								+ -																	
275																								<u></u>	-
67.3																									
200																									
m																									
FIGL	IRE	5	7	EM	E/	247	URE	7	ROI	-1	LES	WI	Н	Pł	ROB	E	NR	4	a	EF	7. 2	778	831))	
			1	ND	¥.	ТТН	PA	RDE	E	NA	2.5	RIL	H	T. 5	790	3	12)	-1	N	18SI	R	IAT	IDN		
						76		-	,																
																					_				
																								· · · · · · · · · · · · · · · · · · ·	-
																									-
																			•		<u>. </u>				_
													:												IL.
												1									-				-

Hereby it is assumed tacitly that temperatures in observation well De Meern did not change notably between first (December 1976) and last (June 1979) measurements, which is most likely true for great depths. The temperature profiles with probes 4 and 5 have been represented in Figure 5. Based upon this it can be expected that the measured temperatures are accurate to within 0,1 $^{\circ}$ C. This accuracy, however, does not hold for all temperature data as about 20 temperature profiles, most of them measured with the fourth probe, show jumps of about 0,1 $^{\circ}$ C. These jumps are due to leakage of water into the probe. Therefore temperatures measured in those wells are less accurate; their inaccuracy may be as much as 0,2 $^{\circ}$ C.

It is remarked that, apart from the calibration error, an error arises because the value of the platinum resistance slightly decreases with increasing pressure exerted by the water column in a piezometer. Based on data of Landolt and Börnstein (1959), it is calculated that with the pressure of a water column of 250 m the temperature indication would be too low by about 0,01 $^{\circ}$ C. This value, also if it should be slightly higher due to the effect of sealing, may be neglected.

Inaccuracies in depth due to cable-stretching may be neglected, especially for the second cable with a steel core. The deviation of the boreholes from the vertical is too small to give inaccuracies of more than a few decimetres. The depths, which were tabulated with respect to the top of the piezometer pipe, deviate in most cases a few decimetres from depths to the ground surface. Therefore they were not corrected to depths with respect to ground surface, unless the difference between both levels amounts to over 2 m.

Influence of the borehole

Even when a well is in thermal equilibrium, the temperature field in and around it will be disturbed. This occurs because the material in the borehole has thermal properties which generally differ from those of the original rock. With a properly completed well these disturbances are negligible thanks to the small borehole diameters, and the use of poorly heat-conducting materials. An exception has to be made for observation well Schoorl (nr. 194), as this well has steel piezometer pipes. Temperatures can be disturbed also by turbulences in the water column of a piezometer. Such turbulences have been investigated by several authors (e.g. Diment, 1967). They indicate that at normal geothermal gradient the heat transfer by turbulences in a water column of sufficiently small dia-

- 20 -

	1			.										
				 		 							<u></u>	
													0	
				 									1	
													11	
													3	
			 										0	
			 	 					;				~	
			 	 									7	
			 										N.	
		 											R.	
		 											Ž	ш
			 	 			-							7
		 												Ť.
						 							<u>o</u>	ш
					1									Ľ.
											, ,			ā
			 											1.1
										•			-	-
													ū	T
		 		 									3	<u>o</u>
													-	3
													Ô	Ř
			 					•						I
							· · · · ·						K	
		 	 										\geq	Σ
			 										L.	n
		 	 	 									<u></u>	Ō
			 	 									D	-
			 											.
				 									Z	Q
		 												K
						 							ហ	
			 										W W	2
		 											5	
		 	 	 										2
			 	 									È	
													<u> </u>	
									-				5	r
				 									ū	Ш
														
		 											11	Z
			 			 							O	9
,		 											111	5
•			 										Ū	Ö
		 <u> </u>							-					
													<u>- a</u> -	
	1			 									<u> </u>	
		 		 1 · · · · · · · · · · ·	trees					:	:. : .:	1	. السب ر از	
		-	 			 						1		
													Ś	X
													ISIC	M dn
													LSIO	Man
													LSIO	A A D
													DIST	UPW/
													SIC S	
													6 D1S1	
													DIST	
						5		-in				9	URE 6 DIST	
	D			Ŋ		9		5				90, -	GURE 6 DIST	

meter - as is the case in this survey - can be neglected. In an improperly completed observation well the temperature field will be disturbed if groundwater flows from one aquifer into another through the back-fill in the borehole. This 'hydraulic short-circuiting', between aquifers with different piezometric heads, occurs if no clay plug has been placed, or if one has been placed improperly. The temperatures measured in observation well Ellecom (nr. 204) provide an example of the influence of 'hydraulic short-circuiting' on the temperature profile (Fig. 6). Obviously in this well, at the depth of a confining stratum at about 95 m depth, there is no clay plug which prevents groundwater to flow from the lower into the upper aquifer. This temperature profile serves also to stress the importance of temperature measurements at small depth intervals. If temperatures would have been measured only at depth intervals of 10 or 20 m, groundwater flow would have been much less evident. With the measurements taken at depth intervals of 1 or 2 m such disturbed temperature data could be discarded.

Influence of the water-displacement by probe and cable

Another source of error to be considered is the displacement of water by the probe and cable in a piezometer. For example, in a 25 mm wide pipe the probe and 250 m of immersed, 6 mm thick, cable cause a displacement of water which is equivalent to a water column of 14,5 m length. This water is displaced out of the piezometer, through its screen, into the porous material surrounding it. Therefore the measured temperatures will be systematically too low, as the water in the piezometer sinks together with the probe.

Assuming an abrupt fall of the water column in a piezometer instead of the real occurring steady fall, the error can be estimated from a suitable cooling curve (Van Dalfsen, 1979a). In case of an abrupt fall, in the usual type of piezometer (PVC 25/33 mm), at normal geothermal gradient (0,025 $^{\circ}$ C m⁻¹), 1¹/₄ h after starting the measurements, the temperature at 250 m would be too low by about 0,01 $^{\circ}$ C (Fig. 7). In this example it is assumed that the piezometer were surrounded by sand with thermal conductivity of 2,2 Wm⁻¹K⁻¹ and volumetric heat capacity of 3,0 MJm⁻³K⁻¹. As the temperature disturbance in case of a steady fall of

- 22 -

the water is of the same order of magnitude as that in the above example, it may be concluded that the error due to water-displacement is negligible.

After the examination, into some detail of above mentioned sources of error, it may be stated that most temperature readings are reliable if one allows an inaccuracy margin of 0,1 $^{\circ}$ C.

3. RESULTS

3.1. Representation of the temperature data

Ten subsurface temperature maps of The Netherlands have been assembled, showing temperature intervals of one degree centigrade at depths of 25, 50, 75, 225 and 250 m below ground surface (Figs. 8 - 17). On these maps the locations of the measured temperature entries have been dotted. Their number decreases with increasing depths. For example, the map for depth of 100 m has over 200 entries, whereas the map for depth of 250 m has only 39. The temperatures measured at depths below 250 m have been presented on temperature profiles (Appendices 1 - 39). Contouring started on the map for depth of 25 m, and was continued on the maps of successive greater depths. Isotherms on maps for depths greater that 200 m have been based mainly on extrapolated temperature profiles. In most cases the depth, to which a temperature profile has been extrapolated, does not exceed the maximum depth of temperature measurement (Table 1) by more than 25%. Extrapolation was based only on the temperature gradient of the deepest section of the measured temperature profile. This method implies some arbitrariness in choosing the length and depth of a section; furthermore it does not take into account the average air temperature at ground surface. Though such a method is disputable, it may be justified after the following considerations:

- (i) With the accurate temperature measurements at small depth intervals

 (1 or 2 m) as obtained in this investigation, even a small section
 of a temperature profile (some tens of metres) suffices for an
 accurate determination of the temperature gradient of that section.
- (ii) At many locations the rock around the deepest part of a well resembles the rock below the well, down to a depth of 250 m. This implies that the same holds true for their thermal conductivities. Therefore - in case of uniform stationary heat transfer by conduction the temperature gradient may only change slightly at these depths.
- (iii) Uniform stationary heat transfer by conduction is more likely to occur at greater depths, as groundwater fluxes and the temperature effects of climatological variations decrease with depth.

(iiii) The use of the average air temperature at ground surface may be disputable, as appeared in this investigation (section 4.1.).
 At contouring, on each map a small number (< 10) of temperature entries was discarded. Obviously these temperatures do not represent natural

Fig. 8 Isotherm map for a depth of 25 m in The Netherlands

9 Isotherm map for a depth of 50 m in The Netherlands

Fig. 10 lsotherm map for a depth of 75 m in The Netherlands

3.13 Isotherm map for a depth of 150 m in The Netherlands

Fig.14 lsotherm map for a depth of 175 m in The Netherlands

11 Isotherm map for a depth of 100 m in The Netherlands

Fig. 12 Isotherm map for a depth of 125 m in The Netherlands

15 Isotherm map for a depth of 200 m in The Netherlands

Fig. 16 Isotherm map for a depth of 225 m in The Netherlands

such areas (0 > 13 ^OC) are situated in the IJssel valley, the central, the eastern and probably also in the southernmost part of the country. The highest temperatures at a depth of 250 m (Fig. 17) are expected in an area north of Venlo, in the province of Limburg, where temperature probably exceeds 18 °C. This has been based mainly on the temperatures measured to a depth of 200 m in observation well Californië nr. 41 (Fig. 18), and also on those measured in observation well Homberg nr. 51 (Fig. 18). The latter well, however, reaches a depth of only 99 m. Another high-temperature area is situated in Twente, where in the shafts of three rock salt exploitation wells (nrs. 207, 208 and 209) temperatures of 17,5, 17,6 and 18,1 $^{\circ}$ C were measured (Appendices 33-35). The value in well nr. 208, 17,6 $^{\circ}$ C, is considered to be the most reliable one, as this well, since its completion in September 1976, had not been in active operation before the temperature measurements in May 1979. With the available temperature data no more areas could be indicated with temperatures exceeding 17.0 °C at 250 m.

The lowest temperature, observed at depth of 250 m, amounts to 12,3 $^{\circ}$ C in observation well Hoenderloo nr. 119 (Appendix 19) in The Veluwe. Extrapolation of the temperature profiles of two other observation wells in the Veluwe, 't Harde (nr. 118) and Hoog-Soeren (nr. 124), indicated an area with temperatures even less than 12 $^{\circ}$ C. Thus temperatures at a depth of 250 m in The Netherlands range from about 12 $^{\circ}$ C to approximately 18 $^{\circ}$ C.

- 37 -

FIGURE 19. AVERAGE AIR TEMPERATURE AT ABOUT 2 m ABOVE GROUND SURFACE (AFTER KNMI, 1972)

-38-

17 Isotherm map for a depth of 250 m in The Netherlands

subsurface temperatures, but stem mainly from such man-made interventions as pumping wells and improperly completed observation wells. The 11 ^OC-isotherm, drawn across the Flevo polders (Fig. 2), on the temperature map for depth of 50 m, is also based on some older temperature data which were published by Csonka (1968) and by De Jong and Geirnaert (1979). Both authors indicate the influence of natural groundwater flow on the subsurface temperature field in these areas. This investigation approves the concept of subsurface heat transfer by groundwater flow and verifies this concept with temperature measurements in groundwater observation wells, to relatively great depths, over the whole of The Netherlands (chapter 4). The temperature intervals, presented on the maps, are not all equally reliable. Of course, their reliability should be judged by the ratio

reliable. Of course, their reliability should be judged by the ratio between dots in a temperature interval and its area, and by the distribution of dots over the area. Besides this it is admitted that the temperature intervals along the boundary of the country are less reliable than those for the central part of the country, simply by lack of data pertaining to the other side of the boundary.

3.2. Features of the observed temperature field

Comparing the temperature maps to each other, one learns that temperature, as is to be expected, generally increases with depth, indicating an overall upward heat flow.

Less self-evident, at first glance, is the pattern of relatively lowtemperature areas at a depth of 25 m (Fig. 8). These relatively low-temperature areas (0 < 10 °C) are The Veluwe (Fig. 2), The Utrechtse Heuvelrug and Gooi, the province of Drente with adjacent parts of the provinces of Friesland, Groningen and Overijssel and some areas in the southern part of the country. This pattern persists, most clearly in The Veluwe and The Utrechtse Heuvelrug with Gooi, and even becomes more pronounced at greater depths.

The pattern of relatively high-temperature areas at depth of 25 m (Θ > 11 $^{\circ}$ C) is less persistent. The relatively high-temperature area in the southwestern part of the country fades out at greater depths, where another pattern of relatively high-temperature areas appears. At a depth of 125 m (Fig. 12)

4. INTERPRETATION OF THE TEMPERATURE DATA

After the delineation of the subsurface temperature field to a depth of 250 m, the question arises how it should be interpreted. In this chapter an interpretation is presented, which takes its starting point in the identification of a heat sink in The Veluwe.

4.1. Heat transfer in groundwater recharge areas

Comparing the average air temperatures ($\Theta > 9 \ ^{\circ}C$), published by KNMI (1972), at about 2 m above ground surface (Fig. 19) with the temperatures ($\Theta < 9 \ ^{\circ}C$) at depths of 25 m and 50 m (Figs. 8 and 9) in The Veluwe, it appears that here subsurface temperatures are less than the average air temperatures. This area constitutes a heat sink that with the usual simplified radiation-conduction model of heat exchange between atmosphere and solid earth cannot be explained satisfactorily (Van Dalfsen, 1979b).

The phenomenon can be explained if one takes the hydrologic cycle into account. Firstly, it is noted that The Veluwe, being an ice-pushed ridge, is a groundwater recharge area (Atlas of The Netherlands, plate VII-3A, 1976). The total annual precipitation surplus in this area almost totally infiltrates into deeper permeable, unconsolidated sands. Therefore an effect of heat transfer between infiltrated water and sediments should be considered. Secondly it is noted that the precipitation surplus occurs mainly in the cold season (October - April). This implies that the average temperature of the water percolating down to the water table is less than average air temperature. The result of this hydrologic regime in The Veluwe is a thermal regime with very low temperatures even down to a depth of 50 m.

With the infiltration-heat convection model, as outlined above for The Veluwe, the interpretation of the other relatively low-temperature areas at a depth of 25 m is straightforward. The Utrechtse Heuvelrug and Gooi, another ice-pushed ridge, is also a groundwater recharge area as well as large areas in the provinces of Drente and Noord-Brabant. Comparing the relatively low temperatures in the northeastern part of the country with the average air temperatures, 8,5 - 9 ^OC (Fig. 19), it appears however that here the effect of groundwater recharge on the temperature field is less pronounced.

4.2. Notes about the hydrogeologic constitution of The Netherlands

The above considerations about the relatively low temperatures at shallow depths in groundwater recharge areas, provide a starting point to the interpretation of the temperatures observed at greater depths. First a few pertinent notions should be made, which pertain to the hydrogeologic constitution of The Netherlands and to groundwater flow in the hydrologic cycle. These notions are essential in the subsequent interpretation of the subsurface temperature field.

Geologically The Netherlands is situated at the southern tip of the North Sea Basin (Van Staalduinen et al., 1980). The depositional regime in this part of the basin resulted in an alternation of sandy and clayey layers at most places. The Tertiary deposits in the basin are for the major part of marine origin, particularly the older Tertiary consists predominantly of marine clays and clayey glauconitic sands.

Since the Miocene fluviatile sedimentation progressively replaced marine sedimentation and predominantly fluvial deposits were laid down over the present mainland. Glacial action during the Quaternary, however, disturbed the original stratification in many parts of the northern half of the country. This resulted in such regional glacial phenomena as the ice-pushed ridges of The Veluwe and The Utrechtse Heuvelrug with Gooi, and in the glacial valleys along these ridges.

Geohydrologically the sand and clay deposits constitute a system of aquifers and confining strata (Atlas of The Netherlands, plate VII-4, 1976). The aquifers and confining strata are elements of the hydrologic cycle, since they determine the patterns of groundwater flow.

Groundwater in the hydrologic cycle, which is steadily recharged in some area, flows through the subsurface rock and, after some time, reappears somewhere at the surface. Its flow, on a macroscopic scale, is determined by the geohydrologic conditions, both natural and man-made. These comprise on the one hand the areal and temporal distribution of recharge and discharge or withdrawal by pumping, and on the other hand the spatial and temporal distribution of the geohydrologic parameters, viz. porosity, storativity and hydraulic conductivity.

A general rule pertaining to groundwater flow fields is expressed below by considering groundwater fluxes through horizontal planes. In recharge areas groundwater fluxes through horizontal planes have a

FIG.20 SCHEMATIC GROUNDWATER FLOW PATTERN IN THE NETHERLANDS (FLOW PATTERN OUTLINED ON PLATE VII-4, ATLAS OF THE NETHERLANDS) -41-

downward direction and decrease with increasing depths. Conversely in discharge areas the fluxes have an upward direction and increase with decreasing depth.

Usually geohydrologists indicate a less pervious stratum below which - in their view - groundwater fluxes are negligible. The depth of the less pervious base of the water-bearing strata in The Netherlands increases from a few tens of metres below ground surface in Twente, The Achterhoek and in the southern parts of the provinces of Zeeland, Noord-Brabant and Limburg to over 250 m in the Central Graben and the northwestern part of the country (Atlas of The Netherlands, plate VII-3D, 1976). The above notions are illustrated with the representation (Fig. 20) of a schematic groundwater flow pattern in the central part of The Netherlands.

4.3. Balance of heat transfer in groundwater recharge areas

In a groundwater recharge area the downward groundwater flow tends to reduce temperatures along its flow-paths to the temperature of the infiltrating water. This reduction of temperature is opposed by the Earth's heat flow, as is outlined below.

At great depths, where groundwater fluxes are small, only a small part of the Earth's heat flux suffices to balance the convective heat transfer by groundwater flow. At these depths temperatures are only slightly below those which would exist if no groundwater flow occurred. At smaller depths, however, increasing parts of the Earth's heat flux are used to balance the convective heat transfer by the increased groundwater fluxes. Therefore only a reduced part of the Earth's heat flow reaches shallow depths in recharge areas. This implies the reduction of temperatures at shallow depths to nearly that of the infiltrating water. From these notions it will be clear that in recharge areas subsurface temperatures are lower than those which would exist if no groundwater flow occurred (negative temperature anomaly), and temperature gradient decreases with decreasing depth (concave shape of temperature profile).

These features are illustraded by the temperature profile (Appendix 19) of observation well Hoenderloo (nr. 119) in The Veluwe. This curve shows the low temperatures (< 9 $^{\circ}$ C) of infiltrated water at shallow depths and also increasing temperature gradients up to 150 m. For the sake of completeness it should be noted that this increase of temperature gradient

- 42 -

cannot be explained by decreasing thermal conductivities as the perforated rock consists of sands up to a depth of 170 m. The cusp at 195 m in the curve is probably caused by groundwater flow, of which the details are not yet clear. It is important to note that the temperatures measured below the less pervious base at 200 m are also lower than would be expected if no groundwater flow occurred.

4.4. Balance of heat transfer in groundwater discharge areas

Outside a recharge area, groundwater flow is mainly horizontal until it reaches its discharge basin. This may be a river valley or a polder in the lower parts of The Netherlands. In its discharge basin, and in some cases also in an area of artifical groundwater withdrawal, flow becomes predominantly vertical. Through convective heat transfer this upward groundwater flow tends to raise the temperatures along its flowpaths to the temperature at the deepest section of the flow-path. The rise of temperature is opposed by heat losses to the atmosphere. Effective heat transfer processes at the Earth's surface (radiation and convection) keep the natural average soil temperature in discharge basins at a value which is slightly above the average air temperature. It should be clear that the temperature anomalies, due to both upward and downward groundwater flow, depend on the amount and areal extent of the groundwater fluxes and on their depth ranges.

As groundwater fluxes decrease with increasing depth, one should be careful in simulating subsurface temperatures with a uniform vertical groundwater flow field as done by De Jong and Geirnaert (1979). A more realistic approach would be a model, in which the recharge and discharge area are represented by a line source and sink, respectively, of groundwater. The two-dimensional flow field of this model should be calculated first, assuming an hydraulically horizontal subsurface layering. This flow field should be inserted in the equation describing the subsurface heat balance, the solution of which then yields the subsurface temperature field. In this procedure a uniform heat current density should be assumed as a boundary condition on some deep layer, across which the groundwater flux is negligible.

Having identified upward groundwater flow as a cause of relatively high subsurface temperatures, the relatively high-temperature areas in the Maas, Rijn, and IJssel valleys and also in the low western and northern parts of the country, may be ascribed to patterns of upward groundwater flow. A typical temperature profile of a groundwater discharge area is that of observation well Amersfoort (nr. 82), in the Eem valley located between the Veluwe and Utrechtse Heuvelrug (Fig. 20). The temperature profile of observation well Amersfoort in the Eem valley is represented in Fig. 21. The temperature effect of upward groundwater flow is expressed by the convexity of the curve, together with the relatively high temperatures at shallow depths.

4.5. Influence of thermal conductivity on the subsurface temperature field

The interpretation of the subsurface temperature field, up to now, is not complete without considering the effects of varying thermal conductivities. According to Fourier's law, the temperature gradients in two successive layers are inversely proportional to their thermal conductivities, if there is a stationary vertical heat transfer by conduction only and if there are no heat sources in these layers. As, concerning unconsolidated water saturated porous media, sands are better conductors than clays and clays are better conductors that peat or brown coal, it should be expected that temperature gradients in peat or brown coal are higher than those in clay, the latter gradients being higher than those in sands. This phenomenon is demonstrated clearly in Appendix 7, which shows the temperature profile in observation well Tungelroy (nr. 48) and also the lithological column of this borehole. Obviously temperature gradients in layers with clay and brown coal are much higher than those in sands.

Temperature gradients may vary in a lateral direction as well as in the vertical direction due to changing thermal conductivities. Lateral variations of thermal conductivity, over considerable depth ranges, are connected with two geological phenomena in The Netherlands. These are the occurrence of deep glacier-tongue basins and gully-like depressions in the northern half of the country, and the appearance of older (mainly Mezozoic) strata at shallow depths in Twente, The Achterhoek and in the southern part of the province of Limburg (Van Staalduinen et al, 1980). The glacial-tongue basins or erosion channels were filled by glacial lake-sediments, mainly clays. Therefore these basins or gullies have relatively low thermal (and hydraulic) conductivities. The same holds probably true for the thermal and hydraulic conductivities of the Mezozoic strata in comparison with the Quaternary formations in the greater

- .44 -

9 10 11 12 13 14 15 10 5 5 8 8 75 5 8 8 75 5 7 5 8 9 7 5 7 5 8 9 7 5 7 5 8 9 7 5 7 5 8 9 7 5 7 5 8 9 7 5 7 5 8 9 7 5 8 9 7 5 8 9 7 5 7 5 8 9 7 5 8 9 7 5 7 5 8 9 7 5 8 9 7 5 8 9 7 5 8 9 7 5 8 9 7 7 8 8 9 7 8 7 8																				r
5 8 8 5 8 7 5 8 7 5 8 7 5 8 7 5 8 7 5 8 7 5 8 7 5 8 8 7 5 8 8 7 5 8 8 8 8			9		-11	2		11		1	2	1	3	1	4	1	5	1	6	1
5 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9															(
5 8 8 5 8 8 5 8 8 5 8 8 5 8 8 7 5 8 8 8 7 5 8 8 8 8							Ľ,													
8 30 30 30 30 30 30 30 30 30 30 30 30 30	25																			
8 5 5 80 75 50 75 75 75 75 75 75 75 76 75 75 76 75 75 76 75 75 76 76 76 77 75 76 76 77 75 76 76 77 75 76 76 77 75 76 76 77 75 76 76 76 77 75 76 76 76 76 76 76 76 76 76 76 76 76 76																				
5 80 25 50 75 50 75 75 75 75 75 75 75 76 75 76 76 77 75 76 77 75 76 77 75 76 77 75 76 77 76 77 76 77 76 77 76 77 77 76 77 77	50																			
5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	30										<u>`````````````````````````````````````</u>									
5 80 25 50 75 50 75 75 75 75 75 75 75 75 75 75 75 75 75				1																
80 25 50 75 76 76 76 76 76 76 76 76 76 76 76 76 76	75											À,								
BB 25 50 75 75 76 77 78 79 79 79 70 71 72 73 75 76 77 78 79 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>``</td><td>X</td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												``	X	<u> </u>						
25 26 25 26 75 20 75 20 75 20 75 20 75 20 75 20 75 20 20 75 20 20 20 20 20 20 20 20 20 20 20 20 20	100																			
25 50 50 75 70 75 75 70 76 75 75 76 76 75 75 76 76 76 75 76 76 76 76 76 76 76 76 76 76 76 76 76	-00																			
25 50 75 1000 1100											:			1						
58 75 98 Ph Figure 21 TEMPERATURE PROFILE (798412). OF OBSERVATION WELL AMERSFORT MR. B2. INDICATING UPMAD GROUNDMATER FLOW	125													1						
58 75 78 78 78 78 78 78 78 78 78 78 78 78 78																				
75 800 M GURE 21 TEMPERATURE PROFILE C788412. OF DESERVATION WELL AMERSFOORT NR. B2. INDICATING UPWARD GROUNDWATER FLOW	150													<u>\</u>	X					
75 300 m IGURE 21 TEMPERATURE PROFILE COBUL2 OF OBSERVATION VELL AMERSFORT NR. B2 INDICATING UPWARD GROUNDWATER FLOW															X.					
75 00 m IGURE 21: TEMPERATURE PROFILE (780412). OF OBSERVATION WELL AMERSFORT NR. 82. INDICATING UPWARD GROUNDMATER FLOW															<u> </u>					
303 m iGURE 21 TEMPERATURE PROFILE (7980412) OF OBSERVATION WELL AMERSFODRT NR. 82. INDICATING UPWARD GROUNDWATER FLOW IOURGE IOURGE IOURGE IOURGE<	175												<u> </u>			<u>}</u>				
M IEERFERATURE PROFILE (788412) OF OBSERVATION WELL AMERSFODRT NR. B2, INDICATING UPMARD GROUNDWATER FLDW IEERFERATURE PROFILE (788412) OF 055ERVATION WELL AMERSFODRT NR. B2, INDICATING UPMARD GROUNDWATER FLDW IEERFERATURE IEERFERATURE IEERFERATURE IEERFERATURE IEERFERATURE IEERFERATURE IEERFERATURE IEERFERATURE <t< td=""><td>200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	200																			
	m																			
	TR	IRF	21	TE	MP	ERA	TUR	EP	RØ	FIL	E C	884	12)	OF D	BSER	VAT.	TON	WELL		
					::.: : 					~ ~	TA 400		**					TCD	51 7	·····
				AM	ER.	57-00	JKI	NR.	•	82,	INU	LAL	LNG	UPWA		RUUI	YUTA	<u>ι επ</u>	FLUI	
				<u></u>																
													:							
									EE											
													-							
																	1			
																	:			
													-							
											-									

Therefore it is possible to (re-) interprete some relatively high-temperature areas in terms of lateral changes in thermal conductivity. These are the areas located in (i) Twente/The Achterhoek and in the southern part of the province of Limburg with older (mainly Mezozoic) strata of shallow depths, (ii) in the province of Friesland where some observation wells near Noordbergum perforate a gully-like depression of Elsterian age, partially filled with the so-called "pot"-clay and (iii) in the IJssel valley, east of The Veluwe (Fig. 20), where a deep glacialtongue basin was filled with clays. The effect of the clays on the temperature gradient is demonstrated in Appendix 16, which shows the temperature profile in observation well Vaassen 2 (nr. 105) together with the lithological column of this borehole in the IJssel valley. In respect to this the relatively high temperature in the IJssel valley should be ascribed to the relatively low thermal conductivities of the clays, wherever they occur over substantial depth ranges.

4.6. Other causes of relatively high subsurface temperatures

part of The Netherlands.

So far a great deal of the temperature data has been interpreted in terms of (i) heat sinks caused by natural infiltration of the precipitation surplus in the cold season, (ii) convective heat transfer of groundwater flowing along its path from recharge to discharge area and (iii) lateral changes in thermal conductivity due to geological structures of relatively large scale, which interrupt the predominantly horizontal bedding in The Netherlands.

These factors, however, do not suffice to explain the temperature profiles in the Rijn and Maas valleys satisfactorily. This applies especially to the temperature profiles in the observation wells Californië and Homberg (Fig. 18), north of Venlo (Fig. 2). To a lesser extent it applies also to the temperature profiles in the observation wells Zoelen 1 (nr. 17) and Andelst (nr. 157), in the area between the rivers Rijn and Waal (Betuwe), and in the observation well Bleskensgraaf (nr. 19) in the western part of the area between the rivers Lek and Waal (Alblasserwaard). All these profiles show relatively high temperature gradients, but no perceivable convexity indicating upward groundwater flow. Neither occur there thick strata of relatively low thermal conductivities to be related with the relatively high temperature gradients.

- 46 -

Two more factors should be regarded, which exert an influence on the subsurface temperature field. These are the average air temperature at the ground surface and the horizontal distribution of heat flow at great depths. They constitute thermal boundary conditions on the upper and lower levels, respectively, of the subsurface under investigation. Average temperatures of the air at ground surface in the Rijn and Maas valleys appear to be slightly higher than those in the surrounding areas (Fig. 19). Consequently in the former areas subsurface temperatures may

expected to be some tenths of a degree centigrade higher than in the latter areas. This slightly higher temperature level, however, does not explain the relatively high temperature gradients.

Lateral variation of heat flow is the only factor, which remains to be considered. Such lateral variation of heat flow may be caused by a non uniform distribution of heat sources at great depths or by a lateral variation of thermal conductivities such as to constitute a "conduction chimney" (e.g. a salt dome). Otherwise there may be a local or regional transport of heat by groundwater, which rises through faults and fissures or simply through the interstices of primary rock porosity.

For the location with relatively high temperature gradients it cannot be inferred, from the temperature data only, which is the decisive mode of heat transfer: heat transport from great depths by groundwater, or a relatively high conductive heat flow. If there is an upward flow of groundwater, then its flow field should be such that somewhere vertical flow turns into a horizontal flow, which passes the observation well at some depths or underneath (Kappelmeyer and Haenel, 1974, p. 201). This restriction on the flow field stems from absence of convexity in the measured temperature profiles.

Some hydrochemical evidence of the rise of warm and gaseous mineral water through faults in the Alblasserwaard, in which observation well Bleskensgraaf (nr. 19) is located, is provided by Engelen (1969). This author supports his view with tectonic data published by Haanstra (1963) and with hydrothermal data published by Kimpe (1963). The latter describes the occurrence of warm mineral water passing along large faults at the southwestern side of the Central Graben at several points in the coal

- 47 -

mines of the Carboniferous district of Limburg. The temperature data of observation well Bleskensgraaf may be put forward as further evidence of the rise of warm water.

The relatively high temperature gradients in the other wells can, as yet, not be combined with relevant hydrochemical data. These wells, however, are located in areas with a pronounced tectonic activity (Van Staalduinen et al, 1980). The tectonic units are the Peel Horst with observation well Zoelen 1 at its northern tip and the shallow Venlo Graben with the observation wells Californië and Homberg. Here tectonic activity might have created a geohydrologic situation, in which warm water rises from great depths.

FIGURE 22 TEMPERATURE DISTRIBUTION AT 500 m BELOW GROUND SURFACE (AFTER ATLAS OF SUBSURFACE TEMPERATURES IN THE EUROPEAN COMMUNITY, 1980)

5. COMPARISON WITH TEMPERATURE DATA FOR GREATER DEPTHS

Data of temperatures at great depts in oil or gas wells were compiled and processed by Prins and compiled by Haenel (1980) in the Atlas of Subsurface Temperatures in the European Community. This Atlas contains isothermal maps of Europe, scale 1 : 5 000 000, for the depths of 500 m, 1000 m, 1500 m, 2000 m, 2500 m, 3000 m and 5000 m, an isothermal map of Belgium and The Netherlands at scale 1 : 1 500 000 for the depth of 1000 m and isothermal maps of the northeastern part of the province of Groningen, scale 1 : 75 000, for the depths of 1000 m, 2000 m and 3000 m below ground surface.

The results of the geothermal investigation in shallow observation wells, especially the isothermal map for the depth of 250 m (Fig. 17) and the temperatures at greater depths (Appendices 1 - 39), may be compared with the isothermal map for the depth of 500 m of the Atlas (Fig. 22). According to this, temperatures at 500 m range between 20 °C and 35 °C, divided in temperature intervals of 5 °C. More specifically the Atlas indicates that in more than half of The Netherlands temperatures range between 20 °C and 25 °C. Temperatures exceed the value of 25 °C in the eastern and southern part of the country. Two areas are indicated with temperatures in the range of 30 - 35 °C. One area covers Twente and the other the northern part of the province of Limburg.

Before any comparison is made, the comparability of the results of the investigation in shallow observation wells and the compilation of deep temperature data should be considered. The locations of the oil and gas wells, from which temperature data stem, have not been indicated in the Atlas. Therefore the isothermal contour-lines cannot be judged with respect to the distribution of data. Of course the oil and gas wells have other locations than the wells (Fig. 1) of the investigation reported here. Moreover the distributions of wells in both surveys are probably very dissimilar. For these very reasons one might expect a dissimilar isothermal contour-line pattern.

- 49 -

In spite of the above mentioned factors, which complicate a comparison, it seems to make sense to relate the two relatively high-temperature areas at depth of 250 m, the area north of Venlo and an area in Twente, to the high-temperature areas indicated at the map for the depth of 500 m. It is noted, however, that on the latter map the high temperature area in the province of Limburg has been centred north of the high temperature area on the map for depth of 250 m. The centres may have been scattered due to the absence of shallow subsurface temperature data in the north of Limburg and, conversely, the absence of oil and gas wells in the area south of it.

Apart from a certain similarity in the delineation of high-temperature areas, as indicated above, there arise also some discrepancies. If one extrapolates the temperature profiles (Appendices 33 - 35) of the rock salt exploitation wells (nrs. 207 - 209) in Twente, then at 500 m one obtains temperatures which are slightly higher than 25 °C, instead of exceeding 30 °C as indicated in the Atlas. It is not sure whether this discrepancy is a local phenomenon, due to rock salt exploitation at this site, or not. Extrapolation of the temperature profile (Appendix 39) in observation well Rouveen (nr. 243), in the province of Overijssel, does not lead to a temperature which exceeds 25 °C at depth of 500 m. Therefore it seems that the area with temperatures higher than 25 °C at depth of 500 m is smaller than delineated on the map. In The Veluwe there may even be an area where temperatures are lower than 20 °C.

Especially in respect to the areas with relatively low subsurface temperatures, identified in this investigation in shallow observation wells, a question should be raised. This question concerns the use of the ground surface as an isothermal upper boundary plane, at the construction of temperature profiles with temperature data from great depths in oil and gas wells, if the upper 200 m or so of the Earth acts as a heat sink due to infiltration. In such a case it seems to be preferable to use the temperature distribution at a level where groundwater fluxes are neglible as boundary values at the upper boundary plane. The temperature distribution at depth of 250 m, resulting from this investigation, may serve as such a boundary condition.

- 50 -

6. CONCLUSIONS AND RECOMMENDATIONS

The geothermal investigation in shallow observation wells, which has been described in some detail above, leads the author to the following conclusions and recommendations.

Conclusions

- Deep groundwater observation wells in The Netherlands provide a suitable opportunity to measure natural subsurface temperatures in a reliable way. In a number of wells, however, the probe may get stuck on its way down with a risk of losing the probe.
- Accurate temperature data absolute inaccuracy less than 0,1 $^{\circ}$ C, inaccuracy in the difference of two data in the order of 0,01 $^{\circ}$ C may be easily obtained, using an equipment with a platinum resistance thermometer. Thermal equilibrium at the transducer may be reached practically in 10 20 s. The connections of probe with cable at one end, and also at the other end of the cable with the measuring instrument may cause troubles, if they are not secured effectively.
- The shallow subsurface temperature field in The Netherlands, delineated to a depth of 250 m below ground surface, shows features which reflect several phenomena. These are (i) convection of heat by infiltrating meteoric water and by groundwater flowing in the hydrologic cycle, (ii) laterally varying thermal conductivities of sediments and (iii) laterally varying heat flow or heat transport at great depths.
- A comparison of the isotherm map for a depth of 250 m with the isotherm map for a depth of 500 m, derived from data of oil and gas wells, shows some similarity in the locations of the high-temperature areas at both depths. The temperatures indicated on the map for a depth of 500 m are probably too high for a number of locations.

Recommendations

- The delineated shallow subsurface temperature field should be verified by measurements, wherever recently completed deep observation, or other type, wells become available. This applies especially for the areas for which there are, as yet, few or no data.
- Available and observable evidence should be compiled to interprete temperature data in terms of the various heat transfer processes which may occur at depth. This evidence may comprise hydrologic, (hydro)geologic, tectonic, hydrochemical, isotope data etc.
- Numerical modeling should be stimulated to gain a quantitative insight into the influence of the hydrologic regime on the thermal regime. A realistic groundwater flow field should be supposed to obtain a realistic simulation of the subsurface temperature field on a regional scale. The simplest approach is to solve the heat balance equation with a two dimensional groundwater flow field.
- In deriving isotherm maps for great depths from temperature data of oil and gas wells, complications due to convection of heat in the shallow subsurface strata should be avoided. This is possible by taking the delineated temperature distribution at a depth of 250 m as a boundary condition for the upper boundary plane.

7. ACKNOWLEDGEMENTS

This investigation was made possible by the permission of numerous organisations (water supply companies; state, provincial and municipal services; industries; individuals) to measure temperatures in their wells. Many times they also provided personal and material help. I gratefully acknowledge their cooperation.

The measurements - totally about 45000 temperature/depth readings were carefully made by Ko van Kuijk, Kim Rutten and Joost Herweijer, many times facing adverse circumstances. At many occasions, especially with artesian wells, J.P.J. van Maarseveen, head of field operations on observation wells at Groundwater Survey, provided invaluable assistance.

The construction, maintenance and repairs of the equipment were performed by Paul Dekker and Bill Bos, both at the instrumentation section of Groundwater Survey. They solved many difficulties with the equipment, which arose during the investigation.

The author is much indebted to W.A. Visser (chairman of the Geothermal Energy Discussion Group) for his continual encouragement, and stimulating discussions.

8. REFERENCES

Visser, W.A., 1978 Early subsurface temperature measurements in The Netherlands Geol. Mijnbouw, 57, p. 1-10

Commission of the European Communities, 1980 Atlas of Subsurface Temperatures in the European Community, compiled by R. Haenel, printed by Th. Schäfer Druckerei GmbH, Hannover

Van Dalfsen, W., 1979a

Theory and examples of model cooling curves Report on Project G/A 9 - Contract 073-76 EC Programme on Geothermal Energy Groundwater Survey TNO, Delft

Landolt and Börnstein, 1959

Zahlenwerte und Funktionen der Physik, II. Band, 6. Teil, Elektrische Eigenschaften I, p. 78 Springer-Verlag, Berlin-Göttingen-Heidelberg

Diment, W.H., 1967

Thermal regime of a large diameter borehole: instability of the water column and comparison of air- and water-filled conditions Geophysics, vol. XXXII, no. 4, pp. 720-726

Csonka, J., 1968

Geothermisch Onderzoek Rapport inzake een onderzoek naar de toepassingsmogelijkheden van de geothermische methode in Nederland Dienst Grondwaterverkenning TNO, Delft

De Jong, S.J. and Geirnaert, W. 1979

The groundwater thermal regime in the Flevo polders and Gelderse Vallei (southern IJsselmeer area, The Netherlands) Geol. Mijnbouw, 58, p. 295-304 Koninklijk Nederlands Meteorologisch Instituut, 1972 Klimaatatlas van Nederland Staatsuitgeverij, 's-Gravenhage

Van Dalfsen, W., 1979b
Temperaturen onder Midden-Nederland in relatie tot
systemen van grondwaterstroming
Annual Report 1978 of Groundwater Survey TNO, Delft

Foundation for the Scientific Atlas of The Netherlands Atlas of The Netherlands, Geohydrology, 1976 Government Printing and Publishing Office, The Hague

Van Staalduinen, C.J., Van Adrichem Boogaert, H.A., Bless, M.J.M., Doppert, J.W. Chr., Harsveldt, H.M., Van Montfrans, H.M., Oele, E., Wermuth, R.A. and Zagwijn, W.H., 1980

> The Geology of The Netherlands Meded. Rijks Geol. Dienst, 31-2, p. 9-49 Geological Survey of The Netherlands

Kappelmeyer O. and Haenel, R., 1974

Geothermics with Special Reference to Application Gebrüder Borntraeger, Berlin-Stuttgart

Engelen, G.B., 1969

Hydrochemistry as a tool for the determination of the origin of upward seepage in the polder area Alblasserwaard (Netherlands) Geol. Mijnbouw, 48, p. 226-239

Haanstra, U., 1963

A review of Mezozoic geological history in The Netherlands Verh. K.N.G.M.G., Geol. Ser., deel 21-1

Kimpe, W.F.M., 1963

Geochimie des eaux dans le Houiller du Limbourg (Pays Bas) Verh. K.N.G.M.G., Geol. Ser., deel 21-2

-----:1::: T:::: 111 ::: Ē ÷:: :::**!**::: Ξ:Ε: ΞE ----------------____

::::

.....

.....

8		9	1	0	1	1	1	2	1	3	14		15	1	<u>6</u>	'C <u>1</u>
	•	;>														
-25																
		1														
-50																
			\mathbf{N}													
-75																
				X												
100																
-125																
-15Ø						N										
175																
							\backslash									
288																
-225									λ	· · · · · · · · · · · · · · · · · · ·						
-25Ø																
										$\mathbf{\lambda}$						
-275														· · · · · · · · · · · · · · · · · · ·		
-300																
,																
325																
ADDC		1 2	ΤΕ	MDEE		DEC	(770	12014) TN	nec	EPVATT		=1 1	NR	32	
							×1 7.4									
LOCA			L۸	GE \	UUR	SCHE									1	
																+
																<u> </u>
													· · · · · · · · · · · · · · · · · · ·			· · · · · ·
														<u> </u>		
												<u> </u>				<u> </u>
							<u></u>									

...... ÷÷÷ ::::: 111 -----_____ ----- + == -----

3	9	1	10	11	12		13	1	.4	1	.5		16	°C 1
		•	•											
25				1										
50														
									:					
75														
180		-												
125						X								
150														
175							\mathbf{h}							
114														
								\						
200								\mathbf{X}						
225														
									\sim					
250										\mathbf{N}				
						[
275											\sum			
											$= \lambda$			
300														
325														
m														
PPEN	DIX 5	TE	MPER	ATURES	(77Ø3	3Ø) II	I OBS	SERV	ATIC	N W	<u>t</u> ll	NR.	35	
AFAL	774	VI	YMEN											
							-							
					· · · · · · · · · · · · · · · · · · ·									
									ļ	. 				
and the second second second second	and the second sec	1	+					1	1			- 1		

24.

M

LOCALITY ROGGEL

.... Ŧ ==== == 1 ::: _ --------------:::: -----_ --------------:†: ----..... -----=

1.....

3 9	10	11	12	13	14	15	16	°C 1
50								
75								
199								
125		1				· · · · · · · · · · · · · · · · · · ·		
150								
175								
000								
C00								
				1				
225				j				
250								
				1				
275								
5/3								
300								
325								
m								
PPENDIX 9	TEMPER/	TURES	(770825)	IN OBSE	RVATION	N WELL N	R. 61	
	envene					· · · · · · · · · · · · · · · · · · ·		
	JUMEREI	N ⊥						
EMARKS	TEMPER/	ATURE PR	ROFILE I	N A PIE	ZOMETER	IN A PU	MPING	
	WELL, WI	ITCH HAT) NOT BE	EN IN A	TIVE OF	PERATION	YET	
	DODEUNI	E CUNDI		TC WATER				
	BURENUL		CINCUL					
	FLOW FF	ROM STR	TA AT A	BOUT 211	3 M INTE) STRATA	AT	
	230-265	5 M						
						· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·				
								1
							<u></u>	

OCALITY VEGHEL

.... = ---1 ____ Ē _____ 11 :::: 11:22 ::::::: = ---=== ----------::::::: _____ :::**|**= ------------------..... ----# 886 ____ ____ ------_____ ----

_

8		9		10	1	1	1	2	1	3	1	4	15	5	1	6) C	17
						\$	•											
-25																		
50																		
30																		
-75																		
							\mathbf{X}											
-188																		
123													· · · · · · · · · · · · · · · · · · ·					
150																		
										\mathbf{X}								
-175																		
											\mathbf{X}							
200																		
-225																		
													\mathbf{X}					
-25Ø														<u> </u>				
														$\mathbf{\lambda}$				
-275															\mathbf{X}			
399																X		
																<u>`````````````````````````````````````</u>		
-325																		
APPE		X 1	7 TF	MPF	2411	RES	(77)	1907) TN	085	SERV	ATIO	N WE		NR.	66		
	/ 77		4		DT.													
																		Ī
				1	1			<u> </u>			<u>tt</u>	<u></u>			1	<u> </u>	:	

 $2_{\rm W}$

3		9	1	0	1	.1	1	2	1	3	1	4	1	5	1	6) `` 	ر 	<u>1</u> 7
	•																		
				$\langle -$															=
-25																			
-50																			
																	=		
.75						\mathbf{N}													
						\mathbf{X}													=
-188																			
								Υ											
125																			
								<u>`````````````````````````````````````</u>	.										
150									X										
										\mathbf{X}									
175										`									
200																			
												\mathbf{X}							
-225																			
-250														X					
															<u> </u>				
275															<u> </u>				
															<u> </u>	N			
300																			
m																			
APP	NDI	x 15	2 TE	MPER	ATU	RES	(78)	1228		OBS	ERV	ATIO	N WE		IR.	70			
LOCA	LIT	Y	GL	IND	IORS	F 2													
																	· · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
																		<u> </u>	
			1																
																			 [
								ļ,											
<u> </u>	+	1	++ +++ + + + + + + + + + + + + + + + + +	4	t	1	t:	1	1	1	1	1							

8	9	10	11	12	13	14	15	<u>16 °C 17</u>
			1.4					
-25								
5Ø								
				N				
-75								
-100								
-125								
150								
1/5								
397								
200								
225								
250								
275								
300								
m								
APPENL	7IX 17	TEMPER	ATURES	(790409)	IN OBS	SERVATION	WELL N	2, 115
LOCALI	TTY	SCHARW	OUDE					
							· · · · · · · · · · · · · · · · · · ·	
		-,						

. '

BROEK IN WATERLAND DCALITY

::†

:====

.::|::: -------------1--=== 1411 -..... = = = = -----..... -----<u>=</u> :#: ::i:: -----------= ----==== _____ _____ 1:22 Ξŧ ---------------

25 58 75 125 150 150 125 150 280 225 250<		
-25 -58 -75 -190 -125 -180 -125 -180 -125 -150 -175 -200 -2250 -275 -10 -275 -275 -275 -275 -275 -275 -275 -275 -275 -275 -275 -275		
58 -75 180 125 125 158 175 200 225 258 259 258 259 258 259 259 259		
58		
75 180 125 150 175 280 225 258 258 258 275 m PPENDIX 19 TEMPERATURES (788705) IN OBSERVATION WELL 0CALITY HOENDERLOD 260/2010 WELL 0CALITY HOENDERLOD 260/2010 WELL 0CALITY HOENDERLOD		
75 188 125 158 175 268 275 m PPENDIX 19 TEMPERATURES (788785) IN OBSERVATION WELL 0CAL 17Y HOENDERLOO EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
180 125 150 175 280 225 258 275 m PPENDIX 19 TEMPERATURES CLUSP-SHAPED TEMPERATURE ANOMALY SCUSP-SHAPED TEMPERATURE CAUSE OF NOMALY SCOUP		
180 125 150 175 200 225 250 275 m PPENDIX 1S TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOO EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 EAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
125 150 175 200 225 250 275 m <i>PPENDIX 19</i> TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOO 200 275 M PPENDIX 19 TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOO 200 201 201 201 201 201 201 201		
125 150 175 200 225 250 250 275 m <i>PPENDIX 19</i> TEMPERATURES (780705) IN OBSERVATION WELL <i>DCALITY</i> HOENDERLOD <i>EMARKS</i> CUSP-SHAPED TEMPERATURE ANONALY AT ABOUT 1 CAUSE OF ANDMALY IS PROBABLY GROUNDWATER F		
150 175 200 225 250 250 250 275 m PPENDIX 19 TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOD EMARKS CUSP-SHAPED TEMPERATURE ANDWALY AT ABOUT 1 CAUSE OF ANDMALY IS PROBABLY GROUNDWATER F		
150 175 280 280 250 250 250 275 m PPENDIX IS TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOO 260 275 M 275		
175 289 225 259 275 m <i>PPENDIX 19</i> TEMPERATURES (788785) IN OBSERVATION WELL 0CALITY HOENDERLOB EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
175 288 225 258 275 In PPENDIX 1S TEMPERATURES (788785) IN OBSERVATION WELL 0CALITY HOENDERLOO EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
200 225 250 275 TD <i>PPENDIX 19</i> TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOO EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 EAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
298 225 258 258 275 m <i>PPENDIX 19</i> TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOO 2004 277 275 m PPENDIX 19 TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOO 2004 2005 2005 2005 2005 2005 2005 2005		
225 250 275 Th PPENDIX 19 TEMPERATURES (780705) IN OBSERVATION WELL OCALITY HOENDERLOO EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 EAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
225 250 275 m <i>PPENDIX 19</i> TEMPERATURES (780705) IN OBSERVATION WELL 0CALITY HOENDERLOD EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
250 275 m PPENDIX 19 TEMPERATURES (780705) IN OBSERVATION WELL OCALITY HOENDERLOD EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
275 m PPENDIX 19 TEMPERATURES (780705) IN OBSERVATION WELL OCALITY HOENDERLOO EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
275 M PPENDIX 19 TEMPERATURES (780705) IN OBSERVATION WELL OCALITY HOENDERLOD EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
275 M PPENDIX 19 TEMPERATURES (780705) IN OBSERVATION WELL OCALITY HOENDERLOD EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
Image: construction Image: construction<		
OCALITY HOENDERLOD EMARKS CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT CAUSE OF ANOMALY IS PROBABLY GROUNDWATER	ND 110	2
CUSP-SHAPED TEMPERATURE ANOMALY AT ABOUT 1 CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F		
EMARKS CUSP-SHAPED TEMPERATURE ANDMALY AT ABOUT 1 CAUSE OF ANDMALY IS PROBABLY GROUNDWATER F		
CAUSE OF ANOMALY IS PROBABLY GROUNDWATER F	04 V	
	LUW,	
DETAILS OF FLOW, HOWEVER, ARE NOT CLEAR		
		-
		• • • • • • • • • • • •

-----..... ____ 11 <u>|</u> | | | ---------

APPENDIX 22 TEMPERATURES (781013) IN OBSERVATION WELL NR. 178 LOCALITY ZUIDELYK FLEVOLAND

1

..... :::E: 1:-_____ -----1111 ____ -----:::+ ÷ ::!: _____ -:::i: EE :::E Œ -:::t:: ==== :::†:

8	9	10	11	12	13	14	15	<u>16 °C 1</u> 7
25								
-50								
-75								
					•••			
199								
123								
150								
-175								
202								
2025								
-22J								
-250								
								X
-275								
m								
APPEI	NDIX 2	3 TEMPE	RATURES	(798727)	IN OBS	ERVATION	N WELL N	R. 182
LOCAL	ITY	NOORL	BERGUM 4					
						· · · · · · · · · · · · · · · · · · ·		
					• · · · · · · · · · · · · · · · · · · ·			

<u>9</u>	9	10	11	12	13	14	15	16 °C
			,					
25								
			<u>}</u>					
50								
75								
7.5								
1 (317)								
166							· · · · · · · · · · · · · · · · · · ·	
125								
150								
175								
200								
				· · · · · · · · · · · · · · · · · · ·				
225								
250					\ _			
275								
300								
225								
m								
PPENL	TIX 25	TEMPER	ATURES (790322)	IN OBS	ERVATION	WELL NR	. 185
nrai I		T VEI						
					· · · · · · · · · · · · · · · · · · ·			
							· · · · · · · · · · · · · · · · · · ·	
							· · · · · · · · · · · · · · · · · · ·	
								•••••••••••••••••••••••••••••••••••••••
						· · · · · · · · · · · · · · · · · · ·		

8	9	10	11	12	13	14	15	16 °C 1
-25								
-50								
-75								
-100								
-125								
-150								
.175								
A.()2								
200					^`∖			
225								
66								
250						X		
230								
2/3 m								
APPEND	VIX 27	TEMPERA	TURES (790330)	IN OBS	ERVATION	WELL NR.	190
	.72							
		YELSEN						
		- · ·						tt

25 58 75 100 125 175 200 225 256 275 300 300 300 300 300 300 325 In PEZOMETERS IN THIS OBSERVATION WELL NR. 194 COCALITY SCHOORL 826 STATNLESS STELL PIPE	8		9		10		11		12		13		14	1	5	1	6	°C
25 50 75 75 120 125 150 175 200 225 258 258 258 300 325 75 300 300 325 75 300 300 300 300 300 300 300 30				•														
38 125 125 125 125 220 225 250 275 300 325 77 300 325 77 300 325 77 300 325 77 300 325 77 300 325 77 300 325 77 300 325 77 300 325 73 300 325 77 300 325 77 300 3225 77 323 74 75 75 320 75 320 77 77	-25																	
S8 125 126 127 128 129 229 229 275 200 225 250 275 290 275 275 275 275 275 275 275 275																		
75 180 125 158 175 200 225 258 258 258 258 258 258 258 258 258 258 259 259 250 250 258 259 259 250 250 251 252 300 302 303 304 305 306 325 307 308 325 325 32 325 32 325 326 327 328 329 3200 3200 3200 3200 3200 3200 <t< td=""><td>-50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-50																	
188 188 125 158 175 208 225 258 258 258 258 380 380 380 380 380 380 380 38																		
123 123 125 159 175 208 225 258 275 308 3255 325 3255 325 3255 325 325	75																	
125 150 175 260 225 250 275 300 325 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 CONLITY SCHOORL 26MARS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE	[/3																	
125 175 200 225 258 275 308 325 m APPENDIX 25 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 COCALITY SCHOORL 227 308 325 M 275 308 325 308 325 325 325 325 326 325 327 327 328 325 328 325 325 325 325 325 325 325 325						1												
125 158 175 208 225 258 275 308 328 3275 308 328 275 308 328 275 308 328 275 308 328 275 308 328 275 308 328 275 308 328 275 308 328 275 308 325 MAPENDIX 29 TEMPERATURES (792411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL 275 377 277 277 277 277 277 277 277	-102																	
125 158 175 208 225 258 275 380 325 m APPENUIX 25 TEMPERATURES (798411) IN OBSERVATION WELL NR. 194 100ALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE						1	X											
158 175 288 225 258 258 275 308 325 m APPENZIX 29 TEMPERATURES (796411) IN OBSERVATION WELL NR. 194 (OCALITY SCHOORL 260 275 308 325 T 326 326 327 328 328 328 328 328 328 328 328	125	i					$\mathbf{\lambda}$											
150 175 200 225 250 275 300 325 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE																		
175 200 225 258 275 308 325 m APPENDIX 29 TEMPERATURES (700411) IN OBSERVATION WELL NR. 194 LUCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE DF STAINLESS STEEL PIPE	150							$\mathbf{\lambda}$										
175 200 225 250 250 275 300 325 m APPENDIX 25 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL FIPE									N.									
225 225 275 275 300 27	175								$\Lambda =$									
225 250 275 300 325 m APPENUIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE									1									
225 250 275 300 925 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 COCALITY SCHOORL COCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE	200																	
225 250 275 275 275 308 325 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE									Ì									
250 275 300 325 m <i>APPENDIX 25</i> TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 <i>LOCALITY</i> SCHOORL <i>REMARKS</i> PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE	225									$\lambda =$								
275 300 325 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE										λ								
275 300 325 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 EDCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE	250																	
275 300 325 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE											$\mathbf{\lambda}$							
300 325 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE	275																	
300 325 m APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE	2/3											\mathbf{i}						
3925 m APPENDIX 25 TEMPERATURES COCALITY SCHOORL REMARKS PIEZOMETERS STAINLESS STAINLESS STAINLESS STAINLESS STAINLESS STAINLESS STAINLESS STAINLESS																		
S25 m APPENDIX 25 TEMPERATURES LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL FIPE	1300												\mathbf{N}					
TEMPERATURES C7924113 IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL SCHOORL SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE STAINLESS STEEL PIPE SCHOORL SCHOORL																		
APPENDIX 29 TEMPERATURES (790411) IN OBSERVATION WELL NR. 194 LOCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE	-325 m																	
COCALITY SCHOORL COCALITY SCHOORL REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE	APP		82	0 TF	MPE		PES	(700	211	Y TN	nec	SERV	ATTO	NWE		ID	10/	
COCALITY SCHOORL REMARKS PIEZOMETERS'IN THIS OBSERVATION STAINLESS STEEL PIPE																11 20		
	LOCA	LIT	Y	SC	:HOOI	3L												
REMARKS PIEZOMETERS IN THIS OBSERVATION WELL ARE OF STAINLESS STEEL PIPE																		
	REMA	RKS		PI	EZO	IETEI	RS I	N TH	IS	DBSE	RVAT	TION	WEL	LAR	e of			
				51	AIN	ESS	STE	EL F	IPE									
															<u></u>			

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	2
25		i I															
			<u>ک</u>														
58																	
/5																	
88																	
					\backslash												
25																	
50																	
75																	
							$\boldsymbol{\lambda}$										
88																	
25																	
50																	
JU																	
75																	
00																	
25											X						
50																	
75													\				
]				
00 m																	
PENUL ICALIT	χ Ξ γ		VEK		URE:	5 (/)	1621	1.		BSE			WELL	NR	_ 20	9	
MARKS		T	EMPE	RAT	URE	PROF	TLE	IN	A R	оск	SAL	т ех	PLOI	TAT	ION	WELL,	
		T	HICH OP (I WA DF R	s t <i>i</i> DCK	SAL	OUT FO	DF RMA1	ACT FION		0PE 369	RATI M, B	ON I ASE	N F	EBR. 433	197: M	3
		Т	OP (DF C	AVEF	RN A	r 40	6 M,	BOT	TOM	AT	424	<u>M</u>				
																·····	

16.25

8	9	10	11	12	13	14	15	<u>16 °C 1</u>
-25								
-50								
-75								
-199								
-125								
-150				À				
175								
-500								
225						X.		
-250								
-275								
300								
325								
350								
375								
400								
M APPEMD	TX 31	TEMPER	ATLIRES (798419)	IN OBS	ERVATION	WELL NR	
OCALI	7Y	HEEZE						

•

н.

:1:

11

=== -----==-