EU-projecten

GeoERA-GSEU

TNO Geologische Dienst Nederland (TNO-GDN) werkt sinds 2018 samen met andere geologische diensten in Europa aan Europese programma's:

GeoERA

TNO Geologische Dienst Nederland (TNO-GDN) heeft in de periode 2018-2022 met andere geologische diensten in Europa en partnerorganisaties (Deltares in Nederland) gewerkt aan onder meer het thema Grondwater in het Europese programma GeoERA (https://geoera.eu/themes/groundwater/). Binnen dit thema heeft TNO-GDN gewerkt aan alle vier projecten:

HOVER: Grondwaterkwaliteit

  • Transport van nitraat en pesticiden
  • Opkomende stoffen in grondwater
  • Leeftijdsverdeling van het grondwater

TACTIC: Grondwaterkwantiteit en klimaat

  • Grondwateraanvulling op Europese schaal
  • Tijdreeksen van grondwaterstanden

RESOURCE:  Grensoverschrijdend grondwater

  • H3O-Plus grensoverschrijdend grondwater in de Roerdalslenk
  • Kartering van nitraattransport in karstsystemen van Zuid-Limburg
  • Kaart van Europese zoet grondwatervoorkomens

VoGERA: Invloed van diepe energie-gerelateerde menselijke activiteiten op grondwater

  • Hydrologie van breuken
  • Kwetsbaarheid van het grondwater in relatie tot energie activiteiten

Binnen HOVER, TACTIC en RESOURCE heeft Deltares meegewerkt aan de Nederlandse bijdrage. HOVER, RESOURCE en VoGERA zijn ondersteund door de provincies Limburg en Noord-Brabant en de waterbedrijven Brabant Water en WML.

De GeoERA projecten hebben geleid tot een groot aantal rapporten (deliverables) en peer-reviewed publcaties in internationale tijdschriften. Een lijst met deliverables en publicaties is onder aan deze pagina te vinden.

GSEU

In 2022 is het programma opgevolgd door een Europese CSA gericht op een "Geological Service for Europe", GSEU, waarbij TNO-GDN ook weer samenwerkt met andere Europese geologische diensten op het gebied van grondwater in Werkpakket 4 (https://geologicalservice.eu). 

PEER-REVIEWED PUBLICATIES

Opkomende stoffen en bestrijdingsmiddelen

Bunting S.Y., Lapworth D.J., Crane E.J., Grima-Olmedo J, Korosa A., Kuczynska A. Mali N. Rosenqvist L., van Vliet M.E., Togola A., Lopez B. ( 2021). Emerging organic compounds in European groundwaters. Environmental Pollution, doi: 10.1016/j.envpol.2020.115945

Broers, H.P., Kivits, T., Sültenfuß, J., Ten Harkel, M., & van Vliet, M. (2024). Mobility and persistence of pesticides and emerging contaminants in age-dated and redox-classified groundwater under a range of land use types. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2024.176344

Transport van nitraat

Kaandorp, V. P., Broers, H.P., van der Velde, Y., Rozemeijer, J., and de Louw, P. G. B. (2021). Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape, Hydrol. Earth Syst. Sci., 25, 3691–3711, https://doi.org/10.5194/hess-25-3691-2021.

Broers, H.P., van Vliet, M., Kivits, T., Vernes, R., Brussée, T., Sültenfuß, J., & Fraters, D. (2024). Nitrate trend reversal in Dutch dual-permeability chalk springs, evaluated by tritium-based groundwater travel time distributions. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2024.175250

Leeftijd van het grondwater

Broers, H.P., Sültenfuß, J., Aeschbach, W., Kersting, A., Menkovich, A., de Weert, J., & Castelijns, J. (2021). Paleoclimate signals and groundwater age distributions from 39 public water works in the Netherlands; Insights From noble gases and carbon, hydrogen and oxygen isotope tracers. Water Resources Research, 57, e2020WR029058. https://doi.org/10.1029/2020WR029058

Tijdreeksen van grondwaterstanden

Martinsen, G., H. Bessiere, Y. Caballero, J. Koch, A.J. Collados-Lara, M. Mansour, O. Sallasmaa, D. Pulido Velázquez, N. Hunter Williams, W.J. Zaadnoordijk, S. Stisen (2021). Developing a pan-European high-resolution groundwater recharge map – Combining satellite data and national survey data using machine learning. Science of the Total Environment, doi: 10.1016/j.scitotenv.2022.153464

Seidenfaden, I.K., M. Mansour, H. Bessiere, D. Pulido-Velazquez, A. Højberg, K. Atanaskovic Samolov, L. Baena-Ruiz, H. Bishop, B. Dessì, K. Hinsby, N.H. Hunter Williams, O. Larva, L. Martarelli, R. Mowbray, A.J. Nielsen, J. Öhman, T. Petrovic Pantic, A. Stroj, P. van der Keur, W.J. Zaadnoordijk (2023) Evaluating recharge estimates based on groundwater head from different lumped models in Europe. Journal of Hydrology: Regional Studies, doi:10.1016/j.ejrh.2023.101399.

DELIVERABLES

HOVER – Nitraat- en pesticidentransport

Ascott, M. et al.(2020) Modelling nitrate and pesticide transport: Assessments of N travel times. GeoERA HOVER WP5, deliverable 5.3. https://repository.europe-geology.eu/egdidocs/hover/hover+d53+modelling+nitrate+and+pesticide+transpo.pdf

Broers, H.P.  et al. (2020). Evaluating groundwater monitoring data, GeoERA HOVER WP5, deliverable 5.2, https://repository.europe-geology.eu/egdidocs/hover/hover+d5_2+final+evaluating+groundwater+monitoring.pdf

Pinson, S. et al. (2020). Assessment of attenuation patterns for a number of relevant European settings. GeoERA HOVER WP5, deliverable 5.4, https://repository.europe-geology.eu/egdidocs/hover/hover+54_assessement_attenuation_patterns_final.pdf

Pinson, S. et al. (2021). Explanatory notes on the redox potential mapping at EU scale, GeoERA HOVER WP5, deliverable 5.5, https://repository.europe-geology.eu/egdidocs/hover/denitrification_map_v3.pdf

HOVER – Opkomende stoffen

Ghestem, J.P. et al. (2021). Proposal and recommendations for monitoring emerging pollutants in EU groundwater, GeoERA HOVER WP8, deliverable 8.5, https://repository.europe-geology.eu/egdidocs/hover/hover_d8_5_cec_monitoring_r1.pdf

Grima_Olmedo, J. et al. (2021). Recommendations for monitoring of key parameters with reference to environmental context, geological setting and risk assessment, GeoERA HOVER WP8, deliverable 8.2, https://repository.europe-geology.eu/egdidocs/hover/hover+d8-2_cec_statistics.pdf

Togola, A.  et al. (2021). European interlaboratory testing of emerging organic compounds in groundwater, GeoERA HOVER WP8, deliverable 8.3, https://repository.europe-geology.eu/egdidocs/hover/hover_d8-3_cec_intercomparison_r1.pdf

HOVER - Leeftijdsverdeling van het grondwater

Hinsby, K. et al. (2019). Environmental tracers, groundwater age distributions and vulnerability, GeoERA HOVER WP6, deliverable 6.1b, https://repository.europe-geology.eu/egdidocs/hover/hover+d6_1b_v1.pdf

Szocs, T. et al. (2020). Collection of use cases including good practice guidance and age indicator sampling guide, GeoERA HOVER WP6, deliverable 6.2, https://repository.europe-geology.eu/egdidocs/hover/hover_d62_v1.pdf

Broers, H.P. et al. (2021). Investigation of age distributions in water supply wells and recommendations for application of tracers and models mainly for estimating groundwater ages between 100 and 1000 years. GeoERA HOVER WP6, Deliverable D6.4. https://repository.europe-geology.eu/egdidocs/hover/hover_d64+age+distributions+final.pdf

RESOURCE - H3O-PLUS grensoverschrijdende grondwaterstudie

Broers H.P. , W.J. Zaadnoordijk & W. Berendrecht (2021). Introduction to the GeoERA Groundwater Viewer: analysing groundwater depletion signals in the Roer Valley Graben. GeoERA RESOURCE Deliverable 3.7, https://repository.europe-geology.eu/egdidocs/resource/geoera+resource+deliverable+d37+introducing+the+g.pdf

Buma, J., and R. Reindersma (2021). Harmonisation of volumes, water balances and recharge and discharge fluxes. GeoERA RESOURCE, Deliverable 3.4, https://repository.europe-geology.eu/egdidocs/resource/geoera+resource+deliverable+d34+harmonisation+of.pdf

Van Vliet, M.E., H.P. Broers, and C. Slenter (2021). 3D visualisation of groundwater composition and age, GeoERA RESOURCE, Deliverable 3.3, https://repository.europe-geology.eu/egdidocs/resource/geoera+resource+deliverable+d33+3d+visualisation.pdf

Vernes, R., K. Beerten, B. Linder, A. Casillas, A. Kruisselbrink, R. Reindersma, B. Rogiers and  C. Slenter (2021). Report with associated database of hydraulic properties of prime aquifers and aquitards and fault zones. GeoERA RESOURCE, Deliverable 3.2, GeoERA RESOURCE, Deliverable 3.2, Zenodo: 10.5281/zenodo.5706026

Zaadnoordijk, W.J., J. Buma, R.W. Vernes, K. Beerten, B. Rogiers, C. Slenter, R. Jaritz, B. Linder and H.P. Broers (2021). 3D visualization of cross-border patterns of groundwater depletion. GeoERA RESOURCE, Deliverable 3.5, https://repository.europe-geology.eu/egdidocs/resource/geoera+resource+deliverable+d35+3d+visualization.pdf

RESOURCE - kartering van karstsystemen

Hakoun, V. et al. (2020). Karst typology in Europe: state of the art, GeoERA RESOURCE WP5, deliverable 5.1, https://repository.europe-geology.eu/egdidocs/resource/geoera+resource+chaka+deliverable+51+state+of+the.pdf

Maréchal, JC. et al. (2020). Detailed conceptual hydrogeological models for pilot areas and case studies, GeoERA RESOURCE WP5, deliverable 5.2, https://repository.europe-geology.eu/egdidocs/resource/geoera+resource+chaka+deliverable+52+detailed+con.pdfV

Maréchal, JC. et al. (2021). Karst aquifer typology tool, GeoERA RESOURCE WP5, deliverable 5.3, https://repository.europe-geology.eu/egdidocs/resource/geoera+resource+chaka+deliverable+53+karst+typolo.pdf

Maréchal JC. et al. (2021). Groundwater management recommendations for karst and chalk aquifers, GeoERA RESOURCE WP5, deliverable 5.4, https://repository.europe-geology.eu/egdidocs/resource/geoera+resource+chaka+deliverable+54+groundwater.pdf

RESOURCE – Europese grondwaterkaart

Kivits, Tano, Hans Peter Broers and Wilbert Berendrecht (2021). Maps showing the depth and volume of fresh groundwater, GeoERA RESOURCE WP6, deliverable 6.3, https://repository.europe-geology.eu/egdidocs/resource/geoera%2Bresource%2Bdeliverable%2B63%2Bmaps%2Bon%2Bvolumes%2Ban.pdf

Kivits, Tano, Viktor Rasmussen, Hans Peter Broers and Wilbert Berendrecht (2021). Dataset to be included in the Information Platform, GeoERA RESOURCE WP6, deliverable 6.4, https://repository.europe-geology.eu/egdidocs/resource/geoera%2Bresource%2Bdeliverable%2B64%2Bdataset%2Bto%2Bbe%2Bincl.pdf

Schoonderwoerd, Eva, Gualbert Oude Essink, Liduin Bos-Burgering (Deltares), Tano Kivits, Willem Jan Zaadnoordijk, Hans Peter Broers (TNO) (2021). Water balance terms for the EU fresh groundwater grid, GeoERA RESOURCE WP6, deliverable 6.5, https://repository.europe-geology.eu/egdidocs/resource/geoera%2Bresource%2Bdeliverable%2B65%2Bwater%2Bbalance%2Bterm.pdf

Kivits T. (2021). Justification of the choices to compile the Pan-EU Groundwater Resources maps by all participating countries. GeoERA RESOURCE WP6, deliverable 6.6, https://repository.europe-geology.eu/egdidocs/resource/geoera%2Bresource%2Bdeliverable%2B66%2Bjustification%2Bof%2Bc.pdf 

VoGERA

Loveless, Si. et al. (2019). Expanded diagrams of conceptual models identifying potential pathways for energy activity in the deep sub-surface and shallow groundwater vulnerability, GeoERA VOGERA Deliverable 4.1, https://repository.europe-geology.eu/egdidocs/vogera/vogera-wp4-d4_1_final_submitted.pdf

Zaadnoordijk, W.J. et al. (2021). Characterization of pathways and groundwater vulnerability assessments due to deep energy related activities for the pilot studies, GeoERA VOGERA Deliverable 3.2, https://repository.europe-geology.eu/egdidocs/vogera/geoera%2Bvogera%2Bd32%2Bfinal.pdf